Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Method of Synthesis of Continuous Systems of Accommodation to the Faults in Navigation Sensors of Autonomous Underwater Robots

Abstract

Today, the problem of timely detection and accommodation to the arising faults in navigation sensors of autonomous underwater robots (AUR) is very topical. Analysis shows that the existing approaches and methods provide a qualitative solution to the accommodation problems of faults only in case of a slow speed motion of AUR. In this paper, a new synthesis method of high-quality continuous accommodation systems to faults a rising in the navigation sensors of AUR is proposed and investigated. This method consists of three main stages. At the first stage, the problem of detection and localization of faults based on the use of a robot's kinematic model and special data fusion from its sensors is solved. It ensures high quality diagnostics data, because the kinematic model connects all the motion parameters of AUR and variables measured by its navigation sensors. At the second stage, the problem of the faults' size identification is solved due to introduction of special feedback in each observer. At the third stage, the additional control signals for AUR guaranteeing expeditious parrying of the arising faults are formed. The advantage of the proposed method is simplicity of its realization and high precision of compensation of the revealed faults in the conditions of uncertainty and essential variability of the environmental parameters. The modeling results prove high efficiency of operation of the synthesized system of accommodation.

About the Authors

V. F. Filaretov
Institute for Automation and Control Processes, Far Eastern Branch of RAS, Vladivostok, 690041, Russia; Far Eastern Federal University, 8, Sukhanova St., Vladivistok, 690950, Russia
Russian Federation


A. V. Zuev
Institute for Automation and Control Processes, Far Eastern Branch of RAS, Vladivostok, 690041, Russia; Far Eastern Federal University, 8, Sukhanova St., Vladivistok, 690950, Russia
Russian Federation


A. N. Zhirabok
Far Eastern Federal University, 8, Sukhanova St., Vladivistok, 690950, Russia; Institute of Applied Mathematics, Far Eastern Branch of RAS, Vladivostok, 690041, Russia
Russian Federation


A. A. Procenko
Far Eastern Federal University, 8, Sukhanova St., Vladivistok, 690950, Russia
Russian Federation


B. . Subudhi
National Institute of Technology, Rourkela, India
Russian Federation


References

1. Blanke M., Kinnaert M., Lunze J., Staroswiecki M. Diagnosis and Fault Tolerant Control. Springer-Verlag. 2003. P. 571.

2. Жирабок А. Н., Писарец А. М. Диагностирование датчиков подводных роботов // Мехатроника, автоматизация, управление. 2004. № 9. С. 15-21.

3. Жирабок А. Н., Писарец А. М. Об одном подходе к диагностированию движителей подводных аппаратов // Труды межд. НТК "Технические проблемы освоения мирового океана", Владивосток: ИПМТ ДВО РАН. 2005. С. 71-77.

4. Antonelli G., Caccavale F., Sansone C., Villani L. Fault diagnosis for AUVs using support vector machines // Proceedings of IEEE International Conference on Robotics and Automation. 2004. Vol. 5. P. 4486-4491.

5. Alessandri A., Caccia M., Verruggio G. A Model-Based Approach to Fault Diagnosis in Unmanned Underwater Vehicles // Proceedings of Oceans. 1998. Nice, France. P. 825-829.

6. Antonelli G. A Survey of Fault Detection/Tolerance Strategies for AUVs and ROVs // Springer Tracts in Advanced Robotics. 2003. Vol. 1. P. 109-127.

7. Alessandri A., Hawkinson T., Healey A. J., Veruggio G. Robust Model-Based Fault Diagnosis for Unmanned Underwater Vehicles Using Sliding Mode Observers // Proc. Int. Symposium Unmanned Untethered Submersible Technology, August 1999. P. 1-8.

8. Deuker B., Perrier M., Amy B. Fault-Diagnosis of Subsea Robots Using Neuro-Symbolic Hybrid Systems // Oceans. Nice, F. 1998. P. 830-834.

9. Dhahri S., Ben Hmida F., Sellami A. LMI-based sliding-mode observer design method for reconstruction of actuator and sensor faults // Int. Journal on Sciences and Techniques of Automatic control. V. 1. N. 1. 2007. P. 91-107.

10. Wang J. Wan L. Jiang C., Sun Y. Wavelet neural network applied to fault diagnosis of underwater vehicle // Proceedings of Control Conference (CCC). 2011. P. 4301-4306.

11. Staroswiecki M., Yang H., Jiang B. Progressive accommodation of aircraft actuator faults // Proc. IFAC Symp. Safeprocess'2006. Beijing. China, 2006. P. 877-882.

12. Weng Z., Patton R. Cui P. Active fault-tolerant control of a double inverted pendulum // Proc. IFAC Symp. Safeprocess'2006. Beijing. PR China, 2006. P. 1591-1596.

13. Staroswiecki M. Fault tolerant control: the pseudo inverse method revisited // Proc. 16th IFAC Congr. Prague, Czech. Republic, 2005.

14. Jang B., Staroswiecki M., Cocquempot V. Active fault tolerant control for a class nonlinear systems // Proc. IFAC Symp. Safeprocess'03. Washington, USA, 2003. P. 127-132.

15. Fossen T.I. Guidance and control of ocean vehicles. John Wiley & Sons Ltd. 1994. P. 494.

16. Филаретов В. Ф., Жирабок А. Н., Зуев А. В., Проценко А. А. Разработка метода синтеза системы аккомодации к дефектам в электроприводах манипуляционных роботов // Информационно-измерительные и управляющие системы. 2013. № 4, т. 11. C. 26-33.

17. Филаретов В. Ф., Лебедев А. В., Юхимец Д. А. Устройства и системы управления подводных роботов. М.: Наука. 2005. 270 c.


Review

For citations:


Filaretov V.F., Zuev A.V., Zhirabok A.N., Procenko A.A., Subudhi B. Method of Synthesis of Continuous Systems of Accommodation to the Faults in Navigation Sensors of Autonomous Underwater Robots. Mekhatronika, Avtomatizatsiya, Upravlenie. 2015;16(4):282-288. (In Russ.)

Views: 473


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)