Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Dynamic Impact of Rogue Wave on a Seagoing Vessel Contour

https://doi.org/10.17587/mau.16.209-216

Abstract

The article is devoted to the study of a numerical modeling of the impact of a rogue wave on a full-sized contour (middle-vessel cross section) in order to obtain the quantitative estimates of its motion parameters. The numerical simulation of rogue wave with the height of 30 meters and wavelength of 120-190 meters was fulfilled in a numerical wave tank with the length of 1000 meters and water depth of 250 meters, which was characterized by the following key features: a) Computational Fluid Dynamics theory; b) Reynolds-Averaged Navier-Stokes Equations using the Volume of Fluid method of the free surface and Three Degrees of Freedom method for describing the movement of the contour. Two maxima in the process of nonlinear transformation of a rogue wave were discovered. Free-floating contour was used to simulate a capsizing due to a rogue wave. Contour was mounted on the surface of the water in such a way that its position in the future would coincide with the x-coordinate of the second maximum of the rogue wave. The maximum of the water velocity in the area, located in the midst of the front, exceeded the velocity of the rogue wave. This caused the beginning of formation of a water jet from the specified zone named as plunging breaker. Simultaneous lifting, horizontal movement at high speed and capsizing of the contour were caused due to a huge steepness of the rogue wave front. The paper treats in detail the aspects associated with the numerical modeling of the contour capsize and estimation of the parameters of its motion. The time histories of the computed velocity of displacement, heeling angle, angle velocity and acceleration, forces, moment of impulse, power of heeling moment, heeling moment of the contour were calculated. The study indicates that the contours of the vessels of up to 9260 t cannot resist the heeling action of the rogue wave. Average capsizing time is half of the period of the rogue wave, which eliminates a chance for vessel's maneuver. Therefore, we can recommend the skippers to avoid swimming sideways to a wave even in calm sea conditions.

About the Author

V. M. Dorozhko
Institute of Automation and Control Processes, Far East Branch, Russian Academy of Sciences (IACP FEB RAS), 690041, Vladivostok, Russian Federation
Russian Federation


References

1. Didenkulova I. I., Slunyaev A. V., Pelinovsky E. N. and et al. Freak waves in 2005 // Nat. Hazards Earth Syst. Sci. 2006. V. 6. Р. 1007-1015.

2. Куркин А. А., Пелиновский Е. Н. "Волны-убийцы": факты, теория и моделирование. Н. Новгород: ННГТУ, 2004. 158 с.

3. Lawton G. Monsters of the deep (The Perfect Wave) // New Scientist. 2001. V. 170, N. 2297. P. 28-32.

4. Rogue waves - forecast and impact on marine structures [Электронный ресурс]. Режим доступа: http://www.kuleu-ven.be/hydr/downloads/MaxWave.pdf

5. Liu P. C., Pinho U. F. Freak waves - more frequent than rare! // Annales Geophys. 2004. V. 22. P. 1839-1842.

6. Nikolkina L., Didenkulova I. Rogue waves in 2006-2010. // Natural hazards and Earth system sciences. 2011. V. 11. P. 2913-2924.

7. Waseda T., Kinoshita T. Freak waves and capsizing accidents // Proceedings of the 11-th International Ship Stability Workshop (ISSW2010). Netherland, 2010. P. 79-84.

8. Справочник по теории корабля / Под ред. Я. И. Войткунского. В 3 тт. Т. 2. Статика судов, качка судов. Л.: Судостроение, 1985. 440 р.

9. Kjeldsen P. A. Sudden Disaster - in Extreme waves. // Rogue Waves 2000: Proceedings of a Workshop in Brest, France, 29-30 November, 2000. P. 19-35.

10. Smith C. B. Extreme waves and ship design // 10th International Symposium on Practical Design of Ships and Other Floating Structures Houston, Texas, 2007.

11. De Kat J. O., Paulling J. R. Prediction of extreme motions and capsizing of ships and offshore marine vehicles // Proceedings of OMAE 2001: The 20th International Conference on Offshore Mechanics and Arctic Engineering. Rio de Janeiro, Brazil, 3-8 June, 2001. P. 817-828.

12. Minami M., Sawada H., Tanizawa K. Study of ship responses and wave loads in the freak wave // Proceedings Of The Sixteenth International Offshore and Polar Engineering Conference. San Francisco, California, USA. May 28 - June 2, 2006. P. 272-278.

13. Sergeeva A., Slunyaev A., Pelinovsky E. and et al. Numerical modeling of rogue waves in coastal waters // Nat. Hazards Earth Syst. Sci. 2014. V. 14. P. 861-870.

14. Clauss G. F., Schmittner C. E., Stuck R. Numerical wave tank - simulation of extreme waves for the investigation of structural responses // Proceedings of OMAE 2005, 24th International Conference on Offshore Mechanics and Arctic Engineering. Halkidiki, Greece. June 12-17, 2005. P. 785-789.

15. Clauss G. F., Schmittner C. E., Hennig J. Simulation of rogue waves and their impact on marine structures // Proceedings of MAXWAVE, Final meeting. Geneva, Switzerland. October 8-10, 2003. P. 1-10.

16. Дорожко В. М. Динамическое воздействие аномально большой волны на неподвижную преграду // Мехатроника, автоматизация, управление. 2013, № 9. С 59-64.

17. Blazek J. Computational Fluid Dynamics: Principles and Applications. Elsevier, 2001. - 440 p.

18. Yakhot V., Orszag S. A. Renormalization group analysis of turbulence: Basic theory // Journal of scientific computing. 1986. V. 1, N. 1. P. 1-51.

19. Hsu K. L., Chen Y. J., Chau S. W. and et al. Ship flow computation of DTMB 5415 // CFD workshop Tokyo, Japan. March 9-11, 2005.

20. Ruban V., Kodama Y., Ruderman M. and et al. Rogue waves - towards a unifying concept: Discussions and debates // The European physical journal special topics. 2010. Issue 185. P. 5-15.

21. Zakharov V. E., Shabat A. B. Exact theory of two-dimensional self-focusing and onedimensional self-modulation of waves in nonlinear media // Soviet physics. Journal of Experimental and Theoretical Physics. 1972. N. 1. P. 62-69.

22. Longuet-Higgins M. S. The asymptotic behavior of the coefficients in Stokes's series for surface gravity waves // Journal of applied mathematics. 1985. V. 34. P. 269-277.

23. Fonseca N., Soares C., Pascoal R. Structural loads induced in a containership by abnormal wave conditions // Journ. Mar. Sci. Technol. 2006. N. 11. P. 245-259.

24. Дьяконов В. П. Вейвлеты. От теории к практике. М.: СОЛОН-Р, 2002. 448 с.

25. Сергиенко А. Б. Цифровая обработка сигналов. СПб.: Питер, 2002. 608 с.

26. Колесник В. П. Решения ANSYS-CFD в авиакосмических технологиях: динамические перестраиваемые сетки в расчетной аэродинамике // АКТО-2008: Авиакосмические технологии и оборудование. Казань-2008. IV Международная научно-практическая конференция. 12-15 августа 2008 года.

27. Hirt C. W., Nichols B. D. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries // J. Comput. Phys. 1985. V. 39. P. 201-225.

28. Флот рыбной промышленности. Справочник типовых судов. М.: Транспорт. 381 с.

29. Афонин А. М. Физические основы механики. М.: Изд-во МГТУ им. Н. Э. Баумана, 2006. 368 с.

30. Правила классификации и постройки морских судов. Т. 1. СПб.: Российский морской регистр судоходства, 2012. 466 с.


Review

For citations:


Dorozhko V.M. Dynamic Impact of Rogue Wave on a Seagoing Vessel Contour. Mekhatronika, Avtomatizatsiya, Upravlenie. 2015;16(3):209-216. (In Russ.) https://doi.org/10.17587/mau.16.209-216

Views: 443


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)