Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Intelligent Seismic-Acoustic System for Identifying the Location of the Focus of an Expected Earthquake

https://doi.org/10.17587/mau/16.147-158

Abstract

This paper presents a brief review of the state-of-the-art in the field of earthquake study and forecasting. We analyze the principles of the methods for determination of the coordinates of earthquake focuses by means of ground seismic stations. We demonstrate that those methods cannot be used in the system for monitoring of the beginning of the earthquake preparation process (in the network of RNM ASP stations). As we know, the beginning of the earthquake process is accompanied by spreading of noisy seismic-acoustic signals. Theoretically, the system for monitoring of the beginning of the earthquake process is based on the technologies for seismic-acoustic signal processing - Robust Noise Monitoring (RNM). The noise characteristics determined by RNM technologies indicate the beginning of the anomalous seismic processes (ASP) and, consequently, a possibility of ASP monitoring. Considering that the seismic-acoustic signal can be represented as the sum of the useful signal and noise (g = X + e), we present the technologies for determining noise characteristics. It is demonstrated in the paper that a change in the estimate of the cross-correlation function RXe(m = 0) between the useful signal Х(iDt) and the noise e(iDt), noise variance De and the value of noise correlation RXee(m = 0) determine the beginning of ASP. One RNM ASP station determines the beginning of ASP within a radius of about 500 km. Determination of the location of an expected earthquake requires a network of RNM ASP stations. We analyze the results of the noise technology-based monitoring of the anomalous seismic processes performed from July 2010 to June 2014 by nine seismic-acoustic stations built at the head of 10 m, 200 m, 300 m and 1400-5000 m deep wells. Based on the results of the experimental data obtained in the period covering over three years, an intelligent system has been built, which allows us to identify the location of the zone of an earthquake, using the combinations of time of change in the estimate of the correlation function between the useful signal and the noise of the seismic-acoustic information received from different stations 10-20 hours before the earthquake. In the long term, the system can be used by seismologists as a tool for determination of the location of the zone of an expected earthquake.

About the Authors

A. M. Pashayev
Azerbaijan National Academy of Aviation, Az1045, Baku, Azerbaijan Republic
Russian Federation


A. A. Alizada
Azerbaijan National Academy of Sciences, Az1001, Baku, Azerbaijan Republic
Russian Federation


T. A. Aliev
Institute of Control Systems of the Azerbaijan National Academy of Sciences, Az1141, Baku, Azerbaijan Republic
Russian Federation


A. M. Abbasov
Ministry of Communications and High Technologies, Az1000, Baku, Azerbaijan Republic
Russian Federation


G. A. Guluyev
Institute of Control Systems of the Azerbaijan National Academy of Sciences, Az1141, Baku, Azerbaijan Republic
Russian Federation


F. G. Pashayev
Institute of Control Systems of the Azerbaijan National Academy of Sciences, Az1141, Baku, Azerbaijan Republic
Russian Federation


U. E. Sattarova
Institute of Control Systems of the Azerbaijan National Academy of Sciences, Az1141, Baku, Azerbaijan Republic
Russian Federation


References

1. Kanamori H., Brodsky E. E. The physics of earthquakes // Reports on progress in physics. 2004. 67. P. 1429-1496.

2. Tothong P., Cornell C. A. Am Empirical Ground-Motion Attenuation Relation for Inelastic Spectral Displacement // Bulletin of the Seismological Society of America. 2006. 96. P. 2146-2164.

3. Ghahari F., Jahankhah H., Ghannad M. A. Study on elastic response of structures to near-fault ground motions through record decomposition // Soil dynamics and earthquake engineering. 2010. 30. P. 536-546.

4. Boore D. M., Bommer J. J. Processing of strong-motion accelerograms: needs, options and consequences // Soil Dynamics and Earthquake Engineering. 2005. 25. P. 93-115.

5. Galiana-Merino J. J., Parolai S., Rosa-Herranz J. Seismic wave characterization using complex trace analysis in the stationary wavelet packet domain // Soil Dynamics and Earthquake Engineering. 2011. 31. P. 1565-1578.

6. Yee E., Stewart J. P., Schoenberg F. P. Characterization and utilization of noisy displacement signals from simple shear device using linear and kernel regression methods // Soil Dynamics and Earthquake Engineering. 2011. 31. P. 25-32.

7. Pavlović V. D., Veličković Z. S. Measurement of the seismic waves propagation velocity in the real medium // The scientific journal Facta Universitatis Series: Physics, Chemistry and Technology. 1998. 1. P. 63-73.

8. Wang Y., Lu J., Shi Y., Yang C. PS-wave Q estimation based on the P-wave Q values // Journal of geophysics and engineering. 2009. 39. P. 386-389.

9. Mallat S. G. A Theory of Multiresolution Signal Decomposition: The Wavelet Representation // IEEE Transactions on Pattern Analysis and Machine Intelligence. 1989. 11 (7). P. 674-693.

10. Vidakovic B., Lozoya C. B. On time-dependent wavelet denoising // IEEE Transaction on Signal Processing. 1998. V. 46. N. 9. P. 2549-2554.

11. Colak O. H., Destici T. C., Ozen S., Arman H., Cerezci O. Frequency-energy characteristics of local earthquakes using discrete wavelet transform // World Academy of Science, Engineering and Technology. 2006. 20. P. 38-41.

12. Hutton D. V. Fundamentals of finite element analysis. McGraw-Hill, 2004.

13. Kislov K. V., Gravirov V. V. Earthquake Arrival Identification in a Record with Technogenic Noise // Seismic Instruments. 2011. V. 47. N. 1. P. 66-79.

14. Descherevsky A. V., Lukk A. A., Sidorin A. Y., Vstovsky G. V., Timashev S. F. Flicker-noise spectroscopy in earthquake prediction research // Natural Hazards and Earth System Sciences. 2003. 3. P. 159-164.

15. Kossobokov V. G. Testing earthquake prediction methods: the West Pacific short-term forecast of earthquakes with magnitude MwHRV ≥ 5,8r // Tectonophysics. 2006. 413. P. 25-31.

16. Shebalin P., Keilis-Borok V., Gabrielov A., Zaliapin I., Turcotte D. Short-term earthquake prediction by reverse analysis of lithosphere dynamics // Tectonophysics, 2006. 413. P. 63-75.

17. Larionov I. A., Sherbina A. O., Mishenko M. A. Geoacoustic emissions response on the process of earthquake preparation at different observation points. Bulleting of KRAESC. Earth Sciences. 2005. 6. 108-115.

18. Aliev T. A., Alizada T. A., Abbasov A. A. Method for monitoring the beginning of anomalous seismic process. International Application No PCT/AZ2005/ 000006, Pub. No WO2006/130933, International Filling Date - December 19, 2005.

19. Aliev T. A., Abbasov A. A., Aliev E. R., Guluev G. A. Method for monitoring and forecasting earthquakes. International Application No PCT/AZ2006/00000, Pub. No WO2007/143799, International Filling Date - June 16, 2006.

20. Алиев Т., Аббасов А., Ализаде А., Етирмишли Г., Гулуев Г., Пашаев Ф. Интеллектуальный мониторинг аномальных сейсмических процессов на острове Песчаный Каспийского моря с использованием робастной помехотехнологии // Мехатроника, автоматизация, управление. 2011. № 5. С. 22-28.

21. Aliev T. A., Abbasov A. M., Quluyev G. A., Pashayev F. H., Sattarova U. E. Technologies and systems for minimization of damage from destructive earthquakes // Seismoforecasting researches carried out in the Azerbaijan territory. 2012. P. 449-464.

22. Aliev T. Noise Technologies for Minimization of Damage Caused by Earthquakes. Germany: Lambert Academic Publishing, 2012.

23. Hashemi M., Alesheikh A. A. A GIS-based earthquake damage assessment and settlement methodology // Soil dynamics and earthquake engineering. 2011. 31. P. 1607-1617.

24. Aliev T. A., Abbasov A. M., Aliev E. R., Guluev G. A. Digital technology and the system for receiving and analyzing the information from deep earth layers for noise-monitoring the technical state of the socially-significant objects // Automatic Control and Computer Sciences. 2007. 41. P. 59-67.

25. Hatzigeorgiou G. D., Beskos D. E. Soil-structure interaction effects on seismic inelastic analysis of 3-D tunnels // Soil Dynamics and Earthquake Engineering. 2010. 30. P. 851-861.

26. Papagiannopoulos G. A., Beskos D. E. On a modal damping identification model for building structures // Achive of Applied Mechanics. 2006. 76. P. 443-463.

27. Papagiannopoulos G. A., Beskos D. E. On a modal damping identification model for non-classically damped structures subjected to earthquakes // Soil Dynamics and Earthquake Engineering. 2009. 29. P. 583-589.

28. Zafarani H., Noorzad A., Ansari A., Bargi K. Stochastic modeling of Iranian earthquakes and estimation of ground motion for future earthquakes in Greater Tehran // Soil Dynamics and Earthquake Engineering. 2009. 29. P. 722-741.

29. Sokolov V. Y., Loh C. H., Wen K. L. Evaluation of hard rock spectral models for the Taiwan region on the basis of the 1999 Chi-Chi earthquake data // Soil Dynamics and Earthquake Engineering. 2003. 23. P. 715-735.

30. Stankiewicz J., Bindi D., Oth A., Parolai S. Designing efficient earthquake early warning systems: case study of Almaty, Kazakhstan // Journal of Seismology. 2013. V. 17, Iss. 4. P. 1125-1137.

31. Rydelek P., Pujol J. Real-Time Seismic Warning with a Two-Station Subarray // Bulletin of the Seismological Society of America. 2004. V. 94, N. 4. P. 1546-1550.

32. Tsuboi S., Saito M., Kikuchi M. Real-time earthquake warning by using broadband P Waveform // Geophysical research letters. 2002. 29. P. 2187-2191.

33. Kanamori H. Real-time seismology and earthquake damage mitigation // Annu. Rev. Earth Planet. Sci. 2005. 33. P. 195-214.

34. Lockwood O. G., Kanamori H. Wavelet analysis of the seismo-grams of the 2004 Sumatra-Andaman earthquake and its application to tsunami early warning // Ge ochemistry Geophysics Geosystems, 2006. 7. P. 1-10. URL: http://www.agu.org/journals/abs/2006/ 2006GC001272.shtml

35. Alcik H., Ozel O., Wu Y. M., Ozel N. M., Erdik M. An alternative approach for the Istanbul earthquake early warning system // Soil Dynamics and Earthquake Engineering. 2011. 31. P. 181-187.

36. Wang J. P., Wu Y. M., Lin T. L., Brant L. The uncertainties of a Pd3-PGV onsite earthquake early warning system // Soil dynamics and earthquake engineering. 2012. 36. P. 32-37.

37. Moser P., Moaveni B. Design and Deployment of a Continuous Monitoring System for the Dowling Hall Footbridge // Society for Experimental Mechanics. Experimental Techniques. 2013. 37. P. 15-26.

38. Satriano C, Yih-MinWub, Aldo Zollo, Hiroo Kanamori. Earthquake early warning: Concepts, methods and physical grounds // Soil Dynamics and Earthquake Engineering. 2011. 31. P. 106-118.

39. Aliev T. A., Abbasov A. M., Guluyev Q. A., Pashaev F. H., Sattarova U. E. System of robust noise monitoring of anomalous seismic processes // Soil Dynamics and Earthquake Engineering. 2013.

40. Aliev T. Digital noise monitoring of defect origin. London: Springer-Verlag, 2007.

41. Aliev T. A. Robust Technology with Analysis of Interference in Signal Processing, New York: Kluwer Academic/Plenum Publishers, 2003.

42. Aliev T. A., Guluyev G. A., Pashayev F. H., Sadygov A. B. Noise monitoring technology for objects in transition to the emergency state // Mechanical Systems and Signal Processing. 2012. 27. P. 755-762.

43. Aliev T. A., Alizade A. A., Etirmishli G. D., Guluev G. A., Pashaev F. G., Rzaev A. G. Intelligent Seismoacoustic System for Monitoring the Beginning of Anomalous Seismic Process // Seismic Instruments. 2011. V. 47, N. 1. P. 1-9.

44. Aliev T. A., Abbasov A. M., Mamedova G. G., Guluev G. A., Pashaev F. G. Technologies for Noise Monitoring of Abnormal Seismic Processes // Seismic Instruments. 2013. V. 49, N. 1. P. 64-80.

45. Pujol J. Earthquake location tutorial: a graphical approach and approximate epicentral locations techniques // Seism. Res. Lett. 75. 2004. N. 1. P. 63-74.

46. Sambridge M., Ghallagher K. Earthquake hypocenter location using genetic algorithms // Bulletin of the Seismological Society of America. 1993. V. 83, N. 5. P. 1467-1491.

47. Mehdi Khashei, Mehdi Bijari. An artificial neural network (p, d, q) model for timeseries forecasting // Expert Systems with Applications. 2010. 37. P. 479-489.

48. Rojas R. Neural networks. Berlin: Springer-Verlag, 1996.


Review

For citations:


Pashayev A.M., Alizada A.A., Aliev T.A., Abbasov A.M., Guluyev G.A., Pashayev F.G., Sattarova U.E. Intelligent Seismic-Acoustic System for Identifying the Location of the Focus of an Expected Earthquake. Mekhatronika, Avtomatizatsiya, Upravlenie. 2015;16(3):147-158. (In Russ.) https://doi.org/10.17587/mau/16.147-158

Views: 539


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)