Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Mathematical Models and Algorithms of the Onboard Multi-Agent Integrated Motion Determination System

https://doi.org/10.17587/mau.23.317-326

Abstract

The  article  describes  the  methodological  and  technological  aspects of the  numerical  synthesis  of an  integrated  multifunctional  system  for assimilation  of navigation  information  delivered  by spatially  spaced  on-board sensors for satellite positioning of a moving  object (technological  platform  —  TP)  and  three-component apparent  acceleration  vector meters combined  with  them  —  3D-newtonometers.  This  is main  formed  image  of the  considered  real physical  system.  Modern methods and practices of systems for monitoring and controlling moving objects are essentially focused on deep mathematically formalized  representations of this subject area. In the light of such ideas, one should consider the content of the article on the problem of complementarity  of two types of information  that are different in physical nature and on the prospects for such a study. The  main model mathematically formalized  constructions follow the fundamental Kalman  paradigm "state — measurement"  and focused on the numerical  solution of ill-posed  inverse problems of determining  the motion of a TP  as a rigid body with the ability to work in real time. An ellipsoidal system was chosen as the base coordinate system, in addition other coordinate  systems were introduced  as well, which  inevitably  determine  the solution of problems due  to the formed set of corresponding transformations.  Algorithms are presented  for calculating  the kinematic  parameters  of the trajectory and spatial orientation  of the TP, the characteristics of the causality of motion — forces and moments,  and also numerical solutions for problems of mobile vector gravimetry and gravitational gradiometry are proposed. An algorithm for simulating onboard multipositioning  has been developed,  which determines  the conduct  of verifying computational  experiments.  Some of their results are given in the article. The  software package  that  implements  the simulation  algorithms and  solutions is developed  using Julia language and allows to obtain a complete set of data  on the state of all systems at any discrete time point of the simulator.

About the Authors

A. S. Devyatisilny
Institute of Automation and Control Processes, Far Eastern Branch of RAS
Russian Federation

Aleksandr S. Devyatisilny - Dr.  of Sci., Professor, Institute of Automation and Control Processes, Far Eastern Branch of RAS.

Vladivostok, 690041.



A. V. Shurygin
Institute of Automation and Control Processes, Far Eastern Branch of RAS
Russian Federation

Vladivostok, 690041.



References

1. Ishlinskij A. J. Classical mechanics and inertial forces, Moscow, Editorial, URSS, 2018, 320 p. (in Russian).

2. Andreev V. D. The theory of inertial navigation. Correctable systems. Moscow, Nauka, 1967, 648 p. (in Russian).

3. Kelly R. J., Davis J. Required Navigation Performance (RNP) for Precision Approach and Landing with GNSS Application, Navigation (USA), 1994, no. 1, pp 1—30.

4. Perov A. I., Harisov V. N. GLONASS. Principles of construction and operation. Moscow, Radiotekhnika, 2005, p. 688 (in Russian).

5. Parkinson W., Spiker J. J. Global Positioning System: Theory and Applications, vol. 1, Washington, AIAA, 1996.

6. Farrell J. A. Aided Navigation Systems: GPS and High Rate Sensord, New York, McGraw-Hill, 2008, 552 p.

7. Babich O. A. Calculation of the angular position of the aircraft using signals from the satellite radio navigation system, Izvestija. RAN. Teorija i sistemy upravlenija, 1996, no. 4, pp. 152—162 (in Russian).

8. Devyatisilny A. S., Kryzhko I. B. Models of navigation definitions using the NAVSTAR satellite system, Matematicheskij sbornik, 1998, no. 6, pp. 108—117 (in Russian).

9. Devyatisilny A. S., Kryzhko I. B. Study of a model of navigation definitions using a satellite system such as GLONASS, Kosmicheskie issledovanija, 1999, vol. 37, no. 3, pp. 261—266 (in Russian).

10. Kalman R., Falb L., Arbib M. Essays on the mathematical theory of systems, Moscow, Mir, 1971, 400 p. (in Russian).

11. Robert G. B., Patrick Y. C. H. Introduction to rundom signals and applied Kalman filtering, USA, 2012, 383 p.

12. Bjushgens S. S. Differential geometry: a textbook for public universities, Moscow, URSS; KomKniga, 2006, 302 p. (in Russian)

13. Joel W. Robbin, Dietmar A. Salamon. Introductiuon to Differential Geometry, Springer Spektrum, Berlin, 2021, 418 p.

14. Lojcjanskij L. G. Fluid and gas mechanics, Moscow, Nauka, 1987, 823 p. (in Russian).

15. Devyatisilny A. S., Shurygin A. V., Stotsenko A. K. Analytical Design and Numerical Research of Motion Detection Models Based on GLONASS Data, Mekhatronika, Avtomatizatsiya, Upravlenie. 2017, vol. 18, no. 11, pp. 782—787 (in Russian), doi:10.17587/mau.18.782-787

16. Peng Y. G., Xu C. D., Li Z. Application of MIEKF optimization algorithm in GPS positioning and velocity measurement, Computer Simulation, 2018, vol. 35, no. 7, pp. 65—69.

17. Galiullin A. S. Inverse problems of dynamics, Moscow, Nauka. Glavnaja redakcija fiziko-matematicheskoj literatury, 1981, 144 p. (in Russian).

18. Alexander G. R. Inverse Problems, Boston, Springer, 2005, 443 p.

19. Vol’fson G. V. Application of gravity-inertial technologies in geophysics, SPb, GNCRF, CNII "Jelektropribor", 2002, 199 p. (in Russian).

20. Li Q., Verdun J., Cali J., Diament M., Maia M. A., Panet I. Estimation of gravity field by mobile gravimetry, American Geophysical Union, Fall Meeting, 2011.

21. Working result datasets in HDF5 format, available at: https://owncloud.dvo.ru/s/WFCpara7kTY5b3H


Review

For citations:


Devyatisilny A.S., Shurygin A.V. Mathematical Models and Algorithms of the Onboard Multi-Agent Integrated Motion Determination System. Mekhatronika, Avtomatizatsiya, Upravlenie. 2022;23(6):317-326. (In Russ.) https://doi.org/10.17587/mau.23.317-326

Views: 432


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)