Источники гармонических силы и скорости в мехатронных автоматических системах
https://doi.org/10.17587/mau.22.208-216
Аннотация
Для исследования резонансных и околорезонансных явлений использован символический (комплексный) метод, позволяющий существенно повысить продуктивность, упростить и формализовать математические преобразования. Рассмотрены параллельное и последовательное соединения элементов механической системы с источником гармонической силы, либо источником гармонической скорости в качестве источника внешнего механического гармонического воздействия. Аналитические описания резонанса в курсах теоретической механики соответствуют параллельному соединению. Существуют устройства, в удовлетворительном приближении способные выполнять функции источников гармонической силы и источников гармонической скорости. Источником гармонической скорости может выступать привод с кривошипно-кулисным механизмом и маховиком с большим моментом инерции. Источником гармонической силы может выступать шток пневмоцилиндра, полость которого сообщается с полостью другого пневмоцилиндра, диаметр которого неизмеримо выше, чем у первого, а поршень совершает гармонические колебания. Механические гармонические воздействия, описываемые в курсах теоретической механики, соответствуют источнику гармонической силы. Описаны четыре режима — резонансы и антирезонансы сил и скоростей. Использование символического (комплексного) метода существенно упростило исследование резонансных и околорезонансных явлений, в частности, позволило глубоко унифицировать и формализовать рассмотрение различных механических систем. Громоздкие и трудоемкие операции, связанные с составлением и решением дифференциальных уравнений, заменены простыми алгебраическими преобразованиями. В основе метода лежит механический аналог закона Ома в комплексном представлении и понятие о механических реактансе, резистансе, импедансе, сассептансе, кондактансе и адмитансе. Классическое рассмотрение доставляет одну амплитудно-частотную характеристику, символический (комплексный) метод — восемь при значительно большем числе характерных точек и характерных отношений. Определены резонанс и антирезонанс сил, резонанс и антирезонанс скоростей. Резонансы возникают при сочетаниях параллельного соединения элементов и источника гармонической силы, либо последовательного соединения элементов и источника гармонической скорости. Антирезонансы возникают при сочетаниях параллельного соединения элементов и источника гармонической скорости, либо последовательного соединения элементов и источника гармонической силы.
Список литературы
1. Градецкий В. Г., Чащухин В. Г. Исследование динамики миниатюрных внутритрубных роботов вибрационного типа // Мехатроника, автоматизация, управление. 2018. Т. 19, № 6. С. 396—401.
2. Голицына М. В. Оптимальный выбор ускорения маятника в задачах управления вибрационным роботом // Мехатроника, автоматизация, управление. 2018. Т. 19, № 1. С. 31—39.
3. Kunugi K., Kojima H., Trivailo P. M. Modeling of tape tether vibration and vibration sensing using smart film sensors // Acta Astronautica. 2015. Vol. 107. P. 97—111.
4. Попов И. П. Применение символического (комплексного) метода для расчета сложных механических систем при гармонических воздействиях // Прикладная физика и математика. 2019. № 4. С. 14—24.
5. Попов И. П. Импедансы и адмитансы механических систем // Фундаментальные и прикладные проблемы техники и технологии. 2020. № 5. С. 3—11.
6. Бурьян Ю. А., Шалай В. В., Зубарев А. В., Поляков С. Н. Динамическая компенсация виброактивных сил в колебательной системе // Мехатроника, автоматизация, управление. 2017. Т. 18, № 3. С. 192—195.
7. Голуб А. П., Селюцкий Ю. Д. Двухзвенный маятник в упругом подвесе // Мехатроника, автоматизация, управление. 2018. Т. 19, № 6. С. 380—386.
8. Семенов М. Е., Матвеев М. Г., Мелешенко П. А., Соловьев А. М. Динамика демпфирующего устройства на основе материала Ишлинского // Мехатроника, автоматизация, управление. 2019. Т. 20, № 2. С. 106—113.
9. Popov I. P. Free harmonic oscillations in systems with homogeneous elements // Journal of Applied Mathematics and Mechanics. 2012. Vol. 76, Iss. 4. P. 393—395.
10. Uzny S., Sok K., Osadnik M. Free vibrations of the partially tensioned geometrically non-linear system subjected to euler’s load // Vibrations in physical systems. 2016. Vol. 27. P. 399—406.
11. Permoon M. R., Haddadpour H., Shakouri M. Nonlinear vibration analysis of fractional viscoelastic cylindrical shells // Acta Mechanica. 2020. P. 1—18
12. J drysiak J. Free vibrations of medium thickness microstructured plates // Vibrations in physical systems. 2016. Vol. 27. P. 169—174
13. Legeza V. P. Dynamics of vibration isolation system with a ball vibration absorber // International Applied Mechanics. 2018. Vol. 54, N. 5. P. 584—593.
14. Попов И. П. Антирезонанс — резонанс скоростей // Мехатроника, автоматизация, управление. 2019. Т. 20, № 6. С. 362—366.
15. Яворский Б. М. Детлаф А. А. Справочник по физике. М.: Наука, 1980. 512 с.
Рецензия
Для цитирования:
Попов И.П. Источники гармонических силы и скорости в мехатронных автоматических системах. Мехатроника, автоматизация, управление. 2021;22(4):208-216. https://doi.org/10.17587/mau.22.208-216
For citation:
Popov I.P. Sources of Harmonic Force and Speed in Mechatronic Automatic Systems. Mekhatronika, Avtomatizatsiya, Upravlenie. 2021;22(4):208-216. (In Russ.) https://doi.org/10.17587/mau.22.208-216