Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Obtaining the Amplitude-Frequency Response of the Retina and Formalization of its Parameters for Using in Diagnostic Systems

https://doi.org/10.17587/mau.19.451-457

Abstract

We consider two problems in this work. The first is the justification for the possibility of obtaining the amplitude-frequency response (AFR) of the retina by processing rhythmic electroretinograms (RERG). The second problem is to approximate the obtained AFR of the retina in order to obtain additional formalized features of the current state of the retina in the form of the coefficients of the approximating polynomials. When we obtain the AFR of the eye retina, we take into consideration the spectrum of the input testing signal (stimulus). Light stimuli are periodically repeated short rectangular light pulses of five standard frequencies. Due to the fact that the retina is a nonlinear dynamic object, the changes in the AFR of the retina are evaluated and taken into consideration in the obtaining of the frequency characteristics for each frequency of light flashes. For the polynomial approximation of the obtained AFR's of the retina, it is proposed to distinguish two frequency ranges: the low-frequency range (from 0 to 50 Hz) and the high-frequency range (from 50 to 120 Hz). In the low-frequency range it is proposed to smooth the retinal AFR by the second degree polynomial smoothing, and in the high-frequency range - by the first degree polynomial smoothing. The proposed approximation of the frequency response allows to obtain 25 additional features from five experimentally determined AFR's for one person. In this case each AFR is characterized by five coefficients of smoothing polynomials. The results of the work allow us to compare different methods of classification (diagnosis) with using the received features.

About the Authors

O. S. Kolosov
National Research University "Moscow Power Engineering Institute"
Russian Federation


V. A. Korolenkova
National Research University "Moscow Power Engineering Institute"
Russian Federation


A. D. Pronin
National Research University "Moscow Power Engineering Institute"
Russian Federation


M. V. Zueva
Moscow R&D Institute of Eye Illness named after Gelmholz of Federal Agency on high-technology medical assistance
Russian Federation


I. V. Tsapenko
Moscow R&D Institute of Eye Illness named after Gelmholz of Federal Agency on high-technology medical assistance
Russian Federation


References

1. Гублер Е. В. Вычислительные методы анализа и распознавания патологических процессов. Л.: Медицина, 1978. 296 с.

2. Кореневский Н. А., Снопков В. Н., Бурмака А. А., Рябкова Е. Б. Проектирование медицинских интеллектуальных систем поддержки принятия решений на основе нечетких информационных технологий // Врач и информационные технологии. 2013. № 6. C. 48-53.

3. Мисюк Н. С. ЭВМ в диагностике нервных болезней. Минск: Беларусь, 1978. 159 с.

4. Реброва О. Ю. Математические алгоритмы и экспертные системы в дифференциальной диагностике инсультов: Дис. на соискание ученой степени докт. мед. наук. Москва, 2003. 325 с.

5. Бакуткин В. В., Зайко Ю. Н., Лепеско А. С., Скиданов А. Н. Разработка системы классификации и диагностики офтальмологических заболеваний на основе искусственных нейронных сетей // Известия Саратовского университета. Новая серия. Серия Физика. 2008. № 1, Т. 8. С. 36-41.

6. Дьяконов Д. Г. Анализ данных, обучение по прецедентам, логические игры, системы WEKA, RapidMainer и Matlab: учеб. пособ. М.: Издательский отдел факультета ВМК МГУ им. М. В. Ломоносова. 2010. 278 с.

7. Hall Mark, Frank Eibe, Holmes Geoffrey, Pfahringer Bernhard, Reutemann Peter, Witten Ian H. The WEKA data mining software: an update // SIGKDD Explorations. 2009. Vol. 11, July. P. 10-18.

8. Воронцов К. В. Курс лекций по методам оценивания и выбора моделей. URL: http://www.kdd.org/explorations/ issues/11-1-2009-07/p2V11n1.pdf

9. Dembele D., Kastner P. C-means method for clustering microarray data // Bioinformatics. 2003. Vol. 19(8). P. 973-980.

10. Орлов А. И. Прикладная статистика. М.: Издательство "Экзамен", 2004. 656 с.

11. Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning. Springer, 2001.

12. Perlman I. The Electroretinogram: ERG. URL: http:// www.webvision.ERG.

13. Zueva M., Tsapenko I., Vaskov S. The components of human and rabbit 8-Hz and 12-hz flicker ERG as a function on intensity, size and position of stimuli // Abstracts of 42nd ISCEV Symposium (San Juan). 2004. P. 132.

14. Marmor F., Fulton A. B., Holder G. E., Miyake Y., Brigell M., Bach M. // ISCEV Standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol. 2009. Vol. 118. P. 69-77.

15. Anisimov D. N., Vershinin D. V., Kolosov O. S., Zueva M. V., Tsapenko I. V. Diagnosis of the Current State of Dynamic Objects and Systems with Complex Structures by Fuzzy Logic Using Simulation Models // Scientific and Technical Information Processing. 2013. Vol. 40, N. 6. P. 365-374.

16. Jenkins G. M., Watts D. G. Spectral Analysis and Its Applications. San Francisco, CA: Holden-Day, 1968.

17. Колосов О. С., Баларев Д. А., Пронин А. Д., Зуева М. В., Цапенко Ц. В. Оценка частотных свойств динамического объекта с использованием импульсных тестирующих сигналов // Мехатроника, автоматизация, управление. 2017. Т. 18, № 4. С. 219-226.

18. Сергиенко А. Б. Цифровая обработка сигналов: учеб. пособ.: СПб. БХВ-Петербург, 2013. 768 с.

19. Применение цифровой обработки сигналов / Под ред. Э. Оппенгейма, Пер. с англ. под ред. А. М. Рязанцева. М.: Мир, 1980.


Review

For citations:


Kolosov O.S., Korolenkova V.A., Pronin A.D., Zueva M.V., Tsapenko I.V. Obtaining the Amplitude-Frequency Response of the Retina and Formalization of its Parameters for Using in Diagnostic Systems. Mekhatronika, Avtomatizatsiya, Upravlenie. 2018;19(7):451-457. (In Russ.) https://doi.org/10.17587/mau.19.451-457

Views: 681


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)