Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Digital Control of Tendencies of Sensor Parameters Changing in Intelligent Systems

https://doi.org/10.17587/mau.19.442-450

Abstract

Current states of mechatronic systems and the state of control objects in every cycle of functioning are usually evaluated with the aid of a set of values of controlled parameters, which are formed with measuring tracts of the system on the basis of signals of sensors. Presently, methods of the analysis of trends of changing the system parameters and control of their location within the limits of warning and emergency intervals are widely used in mechatronics. However, this provides identification of facts of development of already formed negative tendencies, when urgent managerial decisions and technical measures are required for avoidance of emergency situations. More effective control may be implemented during early assessment of the events, what is very important for mechatronic systems, in which systematic processes relatively quickly take place. In connection therewith the cyclic use has been considered of the three-stage process of continuous dynamic tracing of temporary rows of controlled parameters and the use of a fuzzy logic apparatus with the coded fuzzyfication for taking operative decisions about discovery of negative trends in each of five consecutive intervals of observation. Development of solutions in the mechatronic system about the steady increment or decrease of individual parametrical trends or availability of trend flats can be carried out with the aid of a finite set of production rules, which form a consecutive structure of logical conclusions. As for the logic of the simplest procedures of tracing the migration of parameters and production rules of generation of solutions are implemented in processors which support operations with a floating point and logical digit-to-digit operations.

About the Authors

A. V. Gulay
Belorussian National Technical University
Russian Federation


V. M. Zaitsev
Belorussian National Technical University
Russian Federation


References

1. Тихонов В. И., Харисов В. Н. Статистический анализ и синтез радиотехнических устройств. M.: Радио и связь, 1991.

2. Фомин В. Н. Рекуррентное оценивание и адаптивные фильтры. М.: Наука, 1984.

3. Willski A. S. A survey of design methods for dynamical systems // Automatic Journal of IFAC. 1976. Vol. 12, N. 6. P. 601-611.

4. Sastri T., Flores B., Valdes J. Detection points of change in time series // Computers and Operations Research. 1989. Vol. 16, N. 3. P. 271-273.

5. Szeliski R. Computer Vision Algorithms and Applications. Washington: Springer, 2011.

6. Постон Р., Стюарт И. Теория катастроф и ее приложения. М.: Мир, 1980.

7. Арнольд В. И. Теория катастроф. М.: Наука, 1990.

8. Том Р. Структурная устойчивость и морфогенез. М.: Логос, 2002.

9. Gilmore R. Catastrophe Theory for Scientists and Engineers. N. Y.: Dover, 1993.

10. Карибский В. В., Пахоменко П. П., Согомонян Е. С., Халчев В. Ф. Основы технической диагностики. М.: Энергия, 1976.

11. Питерс Т., Барлетта М. Основы. Тренды. СПб.: Издательство Стокгольмской школы экономики в С.-Петербурге, 2006.

12. Мэрфи Д. Технический анализ фьючерсных рынков. М.: Альпина Паблишер, 2011.

13. Вентцель Е. С. Теория вероятностей. М.: Наука, 1969.

14. Заде Л. Понятие лингвистической переменной и ее применение к принятию приближенных решений. М.: Мир, 1976.

15. Штовба С. Д. Проектирование нечетких систем средствами MATLAB. М.: Горячая линия, 2007.


Review

For citations:


Gulay A.V., Zaitsev V.M. Digital Control of Tendencies of Sensor Parameters Changing in Intelligent Systems. Mekhatronika, Avtomatizatsiya, Upravlenie. 2018;19(7):442-450. (In Russ.) https://doi.org/10.17587/mau.19.442-450

Views: 421


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)