Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Unmanned Powerboat Motion Terminal Control in an Environment with Moving Obstacles

https://doi.org/10.17587/mau.22.145-154

Abstract

The major point for consideration throughout this paper is controlling the motion of an unmanned powerboat in an obstructed environment with stationary and moving objects. It offers a procedure for the terminal control law development based on the powerboat programmed motion trajectory in a polynomial form and proposes position-trajectory-based control algorithms. A hybrid method based on virtual fields and unstable driving modes, taking into account powerboat speeds and obstacles, is used to plan motion trajectories for obstacle avoidance. There were experiments carried out to test the developed methods and algorithms meanwhile estimating the energy consumption for control, the length of the trajectory and the safety indicator for obstacle avoidance. The novelty of the proposed approach lies in the method used to develop a local movement trajectory in the field with obstacles and in the hybridization of trajectory scheduling methods. This approach allows us to achieve a given safe distance when avoiding obstacles and virtually eliminate the chances of an emergency collision. The presented results can be used in systems of boats autonomous motion control and allow safe stationary and dynamic obstacles avoidance.

About the Authors

V. I. Finaev
Southern Federal University
Russian Federation
Taganrog, 347928


M. Yu. Medvedev
Southern Federal University
Russian Federation

D. Sc

Taganrog, 347928



V. Kh. Pshikhopov
Southern Federal University
Russian Federation
Taganrog, 347928


V. A. Pereverzev
Southern Federal University
Russian Federation
Taganrog, 347928


V. V. Soloviev
Southern Federal University
Russian Federation
Taganrog, 347928


References

1. Hervas J. R., Reyhanoglu M., Hui Tang. Automatic landing control of Unmanned Aerial Vehicles on moving platforms, 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), Istanbul, 2014, pp. 69—74, doi: 10.1109/ISIE.2014.6864588.

2. Suvorov A. N., Kuzmenkova L. A. Driving Tesla — to the future, Scientific and methodical electronic journal "Concept", 2015, vol. 25, pp. 1—5, available at: http://e-koncept.ru/2015/65303.htm.

3. Erokhin A. V., Erokhin V. I. Methods and models of group self-control by the movement of a team of robots with simultaneous localization and construction of an obstacle map from data of scanning devices, Izvestiya SPbSTU, 2014, no. 27, pp. 88—100.

4. Dongshu W., Haitao W., Lei L. Unknown environment exploration of multi-robot system with the FORDPSO, Swarm and Evolutionary Computation, 2015.

5. Garrido S., Moreno L., Blanco D., Jurewicz P. Path planning for mobile robot navigation using Voronoi diagram and fast marching, International Journal of Robotics and Automation, 2011, vol. 2, iss. 1, pp. 42—64.

6. Mulyukha V. A., Guk M. Yu., Zaborovsky V. S. The system of supervisor network-centric management of robotic objects, Robotics and Technical Cybernetics, 2016, no. 3 (12), pp. 405—410.

7. Varlashin V. V., Ershova M. A., Bunyakov V. A., Shmakov O. U. Real-Time Surround-View System for Mobile Robotic System, Mekhatronika, Avtomatizatsiya, Upravlenie. 2019, vol. 20, no. 3, pp. 162—170 (in Russian), https://doi.org/10.17587/mau.20.162-170.

8. Pavlovsky V., Panchenko A., Orlov I. Control Algorithm for Walking Robot with Mosaic Body, Proc. of the Intern. Conf. on Climbing and Walking Robots, Hangzhou, China, September 6—9, 2015, pp. 265—271.

9. Filaretov V. F., Yukhimets D. A. The Path Planning Method for AUV Group Moving in Environment with Obstacles, Mekhatronika, Avtomatizatsiya, Upravlenie, 2020, vol. 21, no. 6, pp. 356—365 (in Russian), https://doi.org/10.17587/mau.21.356-365.

10. Pshikhopov V., Medvedev M., Gaiduk A., Belyaev V., Fedorenko R., Krukhmalev V. Position-trajectory control system for robot on base of airship, Proceedings of the IEEE Conference on Decision and Control, 2013, pp. 3590—3595.

11. Finaev V., Kobersy I., Kosenko E., Solovyev V., Zargaryan Y. Hybrid algorithm for the control of technical objects, ARPN Journal of Engineering and Applied Sciences, 2015, no. 6, pp. 2335—2339.

12. Benbouabdallah K., Qi-dan Z. A Fuzzy Logic Behavior Controller for a Mobile Robot Path Planning in Multi-obstacles Environment, Research J. of Applied Sciences, Engineering and Technology, 2013, vol. 5(14), pp. 3835—3842.

13. Gaiduk A. R., Martjanov O. V., Medvedev M. Yu., Pshikhopov V. K., Hamdan N., Farhood A. Neural Network Based Control System for Robots Group Operating in 2-d Uncertain Environment, Mekhatronika, Avtomatizatsiya, Upravlenie, 2020, vol. 21, no. 8, pp. 470—479, https://doi.org/10.17587/mau.21.470-479

14. Al-Jarrah R., Shahzad A., Roth H. Path Planning and Motion Coordination for Multi-Robots System Using Probabilistic Neuro-Fuzzy, IFAC-PapersOnLine, 2015, vol. 48, no. 10, pp. 46—51.

15. Nazarahari M., Khanmirza E., Doostie S. Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm, Expert Systems with Applications, 2019, vol. 115, pp. 106—120.

16. Benaziza W., Slimane N., Mallem A. Mobile Robot Trajectory Tracking Using Terminal Sliding Mode Control, Proceedings of the 6th International Conference on Systems and Control, University of Batna 2, Batna, Algeria, May 7—9, 2017.

17. Yiguang Hong, Guowu Yang, Daizhan Cheng, Sarah Spurgeo. A New Approach To Terminal Sliding Mode Control Design, Asian Journal of Control, June 2005, vol. 7, iss. 2, pp. 177—181.

18. Defeng He. Dual-mode Nonlinear MPC via Terminal Control Laws With Free-parameters, IEEE/CAA Journal Of Automatica Sinica, july 2017, vol. 4, no. 3, pp. 526—533.

19. Zuber I. E. Terminal output control for nonlinear nonstationary discrete systems, Differential Equations and Control Processes, 2004, no. 2.

20. Rasekhipour Y., Khajepour A., Chen S.-K., Litkouhi B. A Potential Field-Based Model Predictive Path-Planning Controller for Autonomous Road Vehicles, IEEE Transactions on Intelligent Transportation Systems, 2017, vol. 18, no. 5, pp. 1255—1267.

21. Belogalzov D., Finaev V., Medvedev M., Shapovalov I., Soloviev V. Decentralized Control of a Group of Robots Using Fuzzy Logic, Journal of Engineering and Applied Sciences, 2017, vol. 12, no. 9, pp. 2492—2498.

22. Pshikhopov V., Medvedev M. Motion Planning and Control Using Bionic Approaches Based on Unstable Modes, Path Planning for Vehicles Operating in Uncertain 2D Environments, 2017, pp. 239—280.

23. Pshikhopov V. K., Medvedev M. Y., Fedorenko R. V., Gurenko B. V. Decentralized control algorithms of a group of vehicles in 2D space, Proc. SPIE 10253, 2016 International Conference on Robotics and Machine Vision, 2017, doi: 10.1117/12.2266499.

24. Pshikhopov V., Medvedev M. Group control of autonomous robots motion in uncertain environment via unstable modes, SPIIRAS Proceedings, 2018, vol. 60, no. 5, pp. 39—63.

25. Gurenko B., Fedorenko R., Shevchenko V. Research of autonomous surface vehicle control system, 2016 ACM International Conference Proceeding Series. 4TH INTERNATIONAL CONFERENCE ON CONTROL, MECHATRONICS AND AUTOMATION, ICCMA 2016, Barcelona, December, 07-11, 2016, pp. 131—135.

26. Barbashin Е. A. Lyapunov Functions, Publisher Librokom, 2012.

27. Londhe P. S., Dhadekar D. D., Patre B. M., Waghmare L. M. Non-singular terminal sliding mode control for robust trajectory tracking control of an autonomous underwater vehicle, 2017 Indian Control Conference (ICC), 2017, pp. 443—449.

28. Li B., Xu Y., Liu Ch., Fan Sh., Xu W. Terminal navigation and control for docking an underactuated autonomous underwater vehicle, IEEE International Conference on Cyber Technology in Automation Control and Intelligent Systems, 2015, pp. 25—30.

29. Khatib O. Real-Time Obstacles Avoidance for Manipulators and Mobile Robots, Int. Journal of Robotics Research, 1986, vol. 5, no. 1, pp. 90—98.

30. Platonov A. K., Kirilchenko A. A., Kolganov M. A. Method of potentials in the problem of routing: history and prospects, Moscow, KIAM after M. V. Keldysh, 2001, 32 p. (in Russian).

31. Nooraliei A., Mostafa S. Robot Path Planning Using Wave Expansion Approach Virtual Target,2009 International Conference on Computer Technology and Development 1, 2009, pp. 169—172.


Review

For citations:


Finaev V.I., Medvedev M.Yu., Pshikhopov V.Kh., Pereverzev V.A., Soloviev V.V. Unmanned Powerboat Motion Terminal Control in an Environment with Moving Obstacles. Mekhatronika, Avtomatizatsiya, Upravlenie. 2021;22(3):145-154. https://doi.org/10.17587/mau.22.145-154

Views: 930


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)