The New Strategy of Designing Tracking Control Systems for Dynamical Objects with Variable Parameters
https://doi.org/10.17587/mau.19.435-441
Аннотация
Ключевые слова
Об авторах
V. FilaretovРоссия
D. Yukhimets
Россия
Список литературы
1. Wiener N. Cybernatics or Control and Communication in the Animal and the Machine, The Technology Press and John Wiley&Sons, Inc., New York-Hermann et Cie, Paris, 1948.
2. Petrov B. N. The Principle of Invariance and Conditions for its Use in Designing Linear and Nonlinear Systems, Proc. of 1st IFAC Congress, London, Butterworth, 1960, pp. 259-275.
3. Vukobratovic K. M., Stokic M. D. Scientific Fundamentals of Robotics, 2, Control ofd Vanipulation Robots: Theory and Application, Springer-Verlag, Berlin, 1982.
4. Vukobratovic M., Stokic D., Kircanski N. Non-adaptive and Adaptive Control of Manipulation Robots, Springer-Verlag, Berlin, 1985.
5. Lebedev A. V., Filaretov V. F. Synthesis of a self-adjusting system with a reference model for controlling the velocity of spatial motion of an underwater robot, Int. J. Comput. Syst. Sci, 2002, vol. 41, no. 2, pp. 331-337.
6. Lebedev A. V., Filaretov V. F. Multi-Channel Variable Structure System for the Control of Autonomous Underwater Vehicle, Proc. of IEEE Int. Conf. Mechatronics and Automation, Harbin, China, 2007, pp. 221-226.
7. Filaretov V. F., Yukhimets D. A. Synthesis Method of Control System for Spatial Motion of Autonomous Underwater Vehicle, Int. J. Ind. Eng. Manage, 2012, vol. 3, no. 3, pp. 133-141.
8. Filaretov V. F., Zuev A. V. Features of designing combined force/position manipulator control systems, Int. J. Comput. Syst. Sci., 2007, vol. 48, no. 1, pp. 146-154.
9. Lebedev A. V., Filaretov V. F. Self-adjusting system with a reference model for control of underwater vehicle motion, Optoelectronics, Instrumentation Data Processing, 2015, vol. 51, no. 5, pp. 462-470.
10. Filaretov V. F., Yukhimets D. A. A method for forming program control for velocity regime of motion of underwater vehicles along arbitrary spatial trajectories with given dynamic accuracy, Int. J. Comput. Syst. Sci,, 2011, vol. 50, no. 4, pp. 673-682.
11. Lebedev A. V. The formation of dynamic objects trajectories in conditions of control signals saturation, Proc. of 18th World Multi-Conf. Systemics, Cybernetics and Informatics, 2014, vol. 1, pp. 154-159.
12. Korn G. A., Korn T. M. Mathematical handbook, McGraw-Hill Book Company, New-York, 1968.
13. Filaretov V. F., Yukhimets D. A., Mursalimov E. Sh., Scherbatyuk A. F., Tuphanov I. E. Noviy method konturnogo upravleniya ANPA (The method of tracking Control of Autonomous Unmanned Underwater Vehicle Motion), Mekhatronoka, Avtomatizatsiya, Upravlenie, 2014, no. 8, pp. 46-56 (in Russian).
14. Filaretov V. F., Yukhimets D. A., Mursalimov E. Sh., Scherbatyuk A. F., Tuphanov I. E. Some Marine Trial Results of a New Method for AUV Trajectory Motion Control, Proc. Of OCEANS14 MTS/IEEE, Taipei, Taiwan, 2014, pp. 1-6.
Рецензия
Для цитирования:
., . . Мехатроника, автоматизация, управление. 2018;19(7):435-441. https://doi.org/10.17587/mau.19.435-441
For citation:
Filaretov V.F., Yukhimets D.A. The New Strategy of Designing Tracking Control Systems for Dynamical Objects with Variable Parameters. Mekhatronika, Avtomatizatsiya, Upravlenie. 2018;19(7):435-441. (In Russ.) https://doi.org/10.17587/mau.19.435-441