An Approach to Scene Recognition Based on the Local Interaction of a Group of Robots
https://doi.org/10.17587/mau.22.94-103
Abstract
Keywords
About the Authors
A. D. MoskovskyRussian Federation
Engineer-Researcher
Moscow, 123182
E. V. Burgov
Russian Federation
Moscow, 123182
E. E. Ovsyannikova
Russian Federation
Moscow, 123182
References
1. Sankaranarayanan A. C., Veeraraghavan A., Chellappa R. Object detection, tracking and recognition for multiple smart cameras, Proc. IEEE, 2008, vol. 96, no. 10, pp. 1606—1624.
2. Zervos M. Multi-Camera Face Detection and Recognition Applied to People Tracking, Sch. Comput. Commun. Sci. Ec. Polytech. Fédérale Lausanne, 2013, January.
3. Yamashita A. et al. Human tracking with multiple cameras based on face detection and mean shift, 2011 IEEE Int. Conf. Robot. Biomimetics, ROBIO 2011, 2011, pp. 1664—1671.
4. Harguess J., Hu C., Aggarwal J. K. Fusing face recognition from multiple cameras, 2009 Work. Appl. Comput. Vision, WACV 2009, 2009.
5. An L., Kafai M., Bhanu B. Face recognition in multicamera surveillance videos using dynamic Bayesian network, 2012 6th Int. Conf. Distrib. Smart Cameras, ICDSC 2012, 2012.
6. Karpov V. E., Karpova I. P., Kulinich A. A. Social community robots, Moscow, URSS, 2019, 352 p.
7. SwarmRobot. The official website of the project SwarmRobot, 2016, available at: http://www.swarm-bots.org (accessed: 03.03.2020).
8. Kernbach S. Handbook Of Collective Robotics, Handbook of Collective Robotics — Fundamentals and Challenges, 2013, vol. 2, no. 2000, pp. 978—981.
9. Giusti A. et al. Cooperative sensing and recognition by a swarm of mobile robots, IEEE Int. Conf. Intell. Robot. Syst., 2012, pp. 551—558.
10. Stegagno P., Massidda C., Bülthoff H. H. Object Recognition in Swarm Systems: Preliminary Results, Workshop on the Centrality of Decentralization in Multi-Robot Systems: Holy Grail or False Idol? (IEEE ICRA 2014), 2014, pp. 1—3.
11. Maghami M., Koval M. C., Georgiopoulos M., Rubinoff A. E. A Social Network Analysis for Automatic Target Recognition in Swarm Robotics, International Conference on Robotics and Automation 2010 (ICRA 2010), 2010.
12. Moskovsky A. D., Burgov E. V., Ovsyannikova E. E. Visual analyzer of the animat as a semantic basis of robot sensoric system, Mekhatronika, Avtomatizatsiya, Upravlenie, 2018, vol. 19, no. 5, pp. 336—345 (in Russian).
13. Meyer J. A., Wilson S. Simulation of Adaptive Behavior: from Animals to Animats, Cambridge, MA, MIT Press, 1991.
14. Zaharov A. A. Ants of forest communities, their life and role in the forest, Мoscow, Tovarishhestvo nauchnyh izdanij KMK, 2015, 404 p. (in Russian).
15. Forel A. The social world of ants, Bradford, 1928.
16. Topoff H. An ant nest hat facilitates removing at all stages at development, Ann. Entomol. Soc. Amer., 1975, vol. 68, no. 1, pp. 182—183.
17. Reznikiva J. I. Interspecific relationships in ants, Novosibirsk, Nauka, 1983, 208 p. (in Russian).
18. Burgov E. V. Multi-species association of anthills: transition from incomplete to full association, Zoologicheskij zhurnal, 2015, vol. 94, no. 10, pp. 1200—1210 (in Russian)..
19. Cammaerts M.-C. Colour vision in the ant Myrmica sabuleti MEINERT, 1861 (Hymenoptera: Formicidae), Myrmecological News. Österreichische Gesellschaft f ür Entomofaunistik, 2007, vol. 10, pp. 41—50.
20. Cammaerts M.-C. et al. Use of olfactory and visual cues for orientation by the ant Myrmica ruginodis (Hymenoptera: Formicidae), Myrmecological News. Österreichische Gesellschaft f ür Entomofaunistik, 2012, vol. 16, pp. 45—55.
21. Hölldobler B. Multimodal signals in ant communication, J. Comp. Physiol. A., 1999, vol. 184, pp. 129—141.
22. Fedoseeva E. B. A technological approach to the description of group foraging of ants Myrmica rubra, Zool. Journal, 2015, vol. 94, no. 10, pp. 1163—1178 (in Russian).
23. Dlusskij G. M. Formica ants, Moscow, Nauka, 1967, 233 p. (in Russian).
24. Moskovsky A. D. Graphs as a tool for solving the problem of scene recognition, Fourth All-Russian Scientific and Practical Seminar " Unmanned vehicles with elements of artificial intelligence" (UBS-AI-2017), workshop proceedings, 2017, pp. 56—64 (in Russian).
25. Karpov V. E. About one scene reconstruction mechanism, VI-th International Scientific and Practical Conference "Integrated Models and Soft Computing in Artificial Intelligence" , collection of scientific papers, vol. 1, Мoscow, Fizmatlit, 2011, pp. 407—415 (in Russian).
Review
For citations:
Moskovsky A.D., Burgov E.V., Ovsyannikova E.E. An Approach to Scene Recognition Based on the Local Interaction of a Group of Robots. Mekhatronika, Avtomatizatsiya, Upravlenie. 2021;22(2):94-103. (In Russ.) https://doi.org/10.17587/mau.22.94-103