Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Satellite Formation Flying Maneuver Optimal Control

https://doi.org/10.17587/mau.21.651-655

Abstract

A task of a pair formation flying satellites optimal relative motion control is described. It is presented as a Lagrange problem of satellite relative motion by the criterion of the control acceleration minimization. The сontrol acceleration term corresponds to the term of a fuel flow or a satellite specific impulse. On the basis of a Hill-Clohessy-Wiltshire equation a mathematical model of the relative motion of a pair of satellites is obtained. One satellite is controlled and another is noncontrolled. Analytical description of such relative motion is presented. The optimization criterion considers control acceleration minimization with fixed boundary conditions and a fixed time interval. The system of Euler-Lagrange equations is obtained as a necessary condition for the extremum existence. An analytical solution for the Lagrange problem is obtained. Relative motion simulation for given examples is performed. The example studies relative motion by distance, relative attitude and lateral deviation parametres and four time intervals, corresponding to half orbit length, one, two and four orbit length. The correlation of optimization criterion value and duration of the maneuver is determined. Direct dependence between duration of maneuvers, control acceleration magnitude and control acceleration costs is presented. Correlation between duration of maneuvers and shape of the optimal trajectory is studied. Practical application of this paper results is discussed. An algorithm of a formation flying relative motion control is provided. The algorithm includes stages of an initial relative position definition, the required relative position and duration of a maneuver definition, constants of integration evaluation, optimal control acceleration synthesis.

About the Authors

E. M. Voronov
Bauman Moscow State Technical University
Russian Federation
Moscow


A. A. Karpunin
Bauman Moscow State Technical University
Russian Federation
Moscow


M. V. Palkin
2MIC "NPO Mashinostroyenia"
Russian Federation
Reutov


I. P. Titkov
Bauman Moscow State Technical University
Russian Federation
Moscow


References

1. Voronov E. M., Karpunin A. A., Palkin M. V. Formation flying configuration design and multi-criteria control, Proceedings of the XXXVIII academic conference on Cosmonautics, Moscow, RAS Commission on the scientific heritage pioneers of space exploration, 2014, 418 p. (in Russian).

2. Palkin M. V. Questions of satellite formation flying design and control, Aerospace MAI Journal, 2014, vol. 21, no. 3, pp. 29—35 (in Russian).

3. Titkov I. P. Algorithm for the formation of optimal periodic structures by the criterion of safety and accuracy, Youth Scientific and Technical Bulletin, 2015, no. 12, 7 p., available at: http://sntbul.bmstu.ru/doc/825956.html (in Russian).

4. Palkin M. V., Titkov I. P. Satellite Formation Flying Maneuver Control, Mekhatronika, Avtomatizatsiya, Upravlenie, 2019, vol. 20, no. 5, pp. 308—313 (in Russian), DOI:10.17587/mau.20.308-313.

5. Scharf D. P., Hadaegh F. Y., Ploen S. R. A survey of spacecraft formation flying guidance and control. Part II: control, Proceedings of the 2004 American Control Conference, Boston, MA, USA, 2004, vol. 4, pp. 2976—2985.

6. Averkiev N. F., Vlasov S. A., Zhitnikov T. A. atd others. Formation of structure ballistically linked group of remote sensing spacecrafts, High tech in Earth Space Research, 2016, vol. 8, no. 4, pp. 11—16 (in Russian).

7. Nazarov A. E. Control of apparent SC motion at Tandem Mission Profile, Vestnil NPO imeni S. A. Lavochkina, 2018, no. 1, pp. 19—29. (in Russian)

8. Koenig A. D’Amico S. Safe spacecraft swarm deployment and acquisition in perturbed near-circular orbits subject to operational constraints, Acta Astronautica, 2018, no. 153, DOI:10.1016/j.actaastro.2018.01.037.

9. Schlanbusch R., Kristiansen R., Nicklasson P. Spacecraft formation reconfiguration with collision avoidance, Automatica, 2011, no. 47, DOI:1443—1449. 10.1016/j.automatica.2011.02.014.

10. Ovchinnikov M. Y. Dynamics and control of promising single-element orbital systems, Vestnik of Lobachevsky University of Nizhni Novgorod, 2011, no. 4—2, 3 p. (in Russian).

11. Jianqiao Z., Ye D. Biggs J. Sun Z. Finite-time relative orbit-attitude tracking control for multi-spacecraft with collision avoidance and changing network topologies, Advances in Space Research, 2018, no. 63, 21 p, DOI:10.1016/j.asr.2018.10.037.

12. Mauro G. Di, Bevilacqua R., Spiller D., Sullivan J., D’Amico S. Continuous maneuvers for spacecraft formation flying reconfiguration using relative orbit elements, Acta Astronautica, 2018, no. 153, pp. 311—326, DOI:10.1016/j.actaastro.2018.01.043.

13. Goncharevsky V. Optimal continuous control of mutual spacecraft maneuvering without restrictions on type of trajectory in orbital relative coordinate system, Information and Space, 2016, no. 1, pp. 143—147 (in Russian).

14. Franzini G., Tannous M., Innocenti M. Spacecraft relative motion control using the state-dependent Riccati equation technique, 10th International ESA Conference on Guidance, Navigation & Control Systems, 29 May — 2 June 2018, Salzburg, Austria, 15 p.

15. Yunjun X., Fitz-Coy N. G., Lind R., Tatsch A. m Control for Satellites Formation Flying, Journal of Aerospace Engineering — J AEROSP ENG., 2007, no. 20, DOI:10.1061/(ASCE)0893- 1321(2007)20:1(10).

16. William Wiesel. Optimal Impulsive Control of Relative Satellite Motion, Journal of Guidance Control and Dynamics, 2003, 26(1), pp. 74—78, DOI: 10.2514/2.5016.

17. Ulybyshev Y. Long-Term Formation Keeping of Satellite Constellation Using Linear-Quadratic Controller, Journal of Guidance Control and Dynamics, no. 21(1), pp. 109—115, DOI: 10.2514/2.4204.

18. Sedwick R. J., Miller D., Kong E. Mitigation of Differential Perturbations in Clusters of Formation Flying Satellites, AIAA/AAS Space Flight Mechanics Conference, Breckenridge, Colorado, 1999, vol. 102, part. 1, AAS99—124, pp. 323—342.

19. Clohessy W. H., Wiltshire R. S. Terminal Guidance for Satellite Rendezvous, J. Aerospace Sciences, 1960, vol. 27, no. 9, pp. 653—678.

20. Ivanov N. M., Lysenko L. N. Spacecraft ballistics and navigation. Ed. 3, Moscow, MSTU named after N. E. Bauman, 2016, 528 p. (in Russian).


Review

For citations:


Voronov E.M., Karpunin A.A., Palkin M.V., Titkov I.P. Satellite Formation Flying Maneuver Optimal Control. Mekhatronika, Avtomatizatsiya, Upravlenie. 2020;21(11):651-655. (In Russ.) https://doi.org/10.17587/mau.21.651-655

Views: 713


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)