Iterative Methods for Solving Systems of Multi-Valued Logical Equations in the Simulation of Object Control Digital Systems
https://doi.org/10.17587/mau.21.511-520
Abstract
The article is devoted to the analysis of methods for solving systems of multivalued logical equations by iteration methods. Iterative methods for solving such systems of equations are a mathematical description of the main process of functional-logical simulation, which is used at the stage of designing digital systems for objects control to verify the correctness of the design. Consideration of multi-valued values of logical signals at the outputs of blocks and elements of digital systems is explained by the fact that in some cases, to analyze the correctness of time relationships when simulating the hardware of digital systems, a several valued representation of logical signals is used, as well as that recently, logical elements are being developed that implement four or more valued logic. Based on the analysis of the structure of the system of logical equations used in digital hardware simulation, using graph and logical models, an analysis is made of the existence of solutions and their number. Iterative methods of a simple and generalized iteration are analyzed, a relationship is shown between the number of solutions of the system of equations and its graph representation, which reflects a given circuit of connecting elements of the hardware of a digital control system. For the generalized iteration method, options with a different structure of the iteration trace are considered, in particular, it is shown that, with a certain structure of the iteration trace, the generalized iteration turns into a simple iteration or Seidel iteration. It is shown that the generalized iteration most adequately describes the process of simulating the switching of logical signals in a simulated circuit of digital control systems hardware. The correspondence between various options of functional-logical simulation of digital systems and the used methods of iterative solution of systems of logical equations is shown.
About the Authors
A. D. IvannikovRussian Federation
Ivannikov Alexander D., Dr.Sc., Professor
Moscow, 124365
A. L. Stempkovskiy
Russian Federation
Moscow, 124365
References
1. Keresztes P., Tukacs A., Török M. A Multi Valued Logic VHDL Package for Switch Level Simulation of Novel Digital CMOS Circuits // 2018 International Conference on Recent Innovations in Electrical, Electronics & Communication Engineering (ICRIEECE). Bhubaneswar, India. 2018. P. 25—28.
2. Bara A., Bazargan-Sabet P., Chevallier R., Encrenaz E., Ledu D., Renault P. Formal verification of timed VHDL programs // 2010 Forum on Specification & Design Languages (FDL 2010). Southampton. 2010. P. 1—6.
3. Иванников А. Д., Стемпковский А. Л. Основные положения системы моделирования проектов цифровых систем для совместной отладки технических средств и программно-микропрограммного обеспечения // Информационные системы и технологии. 2018. № 6 (110). С. 13—19.
4. Kunapareddy S., Turaga S. D., and Sajjan S. S. T. M. Comparision between LPSAT and SMT for RTL verification // 2015 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2015]. Nagercoil. 2015. P. 1—5.
5. Иванников А. Д., Стемпковский А. Л. Формализация задачи отладки проектов цифровых систем // Информационные технологии. 2014. № 9. С. 3—10.
6. Куцак Н. Ю., Подымов В. В. Формальная верификация диаграмм троичных цифровых сигналов // Моделирование и анализ информационных систем. 2019. Т. 26, № 3. С. 332—350.
7. Tai Y, Hu W., Guo Lantian, Mao B., Mu D. Gate Level Information Flow analysis for multi-valued logic system // 2017 2nd International Conference on Image, Vision and Computing (ICIVC). Chengdu. 2017. P. 1102—1106.
8. Mane S. C., Hajare S. P., Dakhole P. Current mode quaternary logic circuit // 2017 International Conference on Communication and Signal Processing (ICCSP). Chennai. 2017. P. 0825—0829.
9. Sooriamala A. P., Poovannan E. Synthesis of multiple valued logic digital circuits using CMOS gates // 2017 International Conference on Innovations in Electrical, Electronics, Instrumentation and Media Technology (ICEEIMT). Coimbatore. 2017. P. 383—388.
10. Prokopenko N. N., Chernov N. I., Yugai V., Butyrlagin N. V. The element base of the multivalued threshold logic for the automation and control digital devices // 2017 International Siberian Conference on Control and Communications (SIBCON). Astana. 2017. P. 1—5.
11. Shimabukuro K., Kameyama M. Fine-Grain Pipelined Reconfigurable VLSI Architecture Based on Multiple-Valued Multiplexer Logic // 2017 IEEE 47th International Symposium on Multiple-Valued Logic (ISMVL). Novi Sad. 2017. P. 19—24.
12. Закревский А. Д. Логические уравнения. М.: Едиториал УРСС, 2003. 96 с.
13. Ландау И. Я. Применение ЦВМ для проектирования ЦВМ. М.: Энергия, 1974. 152 с.
14. Мальцев А. И. Алгебраические системы. М.: Наука, 1970. 392 с.
15. Норенков И. П., Маничев В. Б. Системы автоматизированного проектирования электронной и вычислительной аппаратуры. М.: Высшая школа, 1983. 272 с.
16. Теория и методы автоматизации проектирования вычислительных систем. Под ред. М. Брейера. М.: Мир, 1977. 283 с.
Review
For citations:
Ivannikov A.D., Stempkovskiy A.L. Iterative Methods for Solving Systems of Multi-Valued Logical Equations in the Simulation of Object Control Digital Systems. Mekhatronika, Avtomatizatsiya, Upravlenie. 2020;21(9):511-520. (In Russ.) https://doi.org/10.17587/mau.21.511-520