Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Analytical Construction Robust Optimal Control Systems by the Criterion of Quick Action with Infinitely High Gain

https://doi.org/10.17587/mau.21.453-463

Abstract

The problem of the synthesis of robust control systems with a high gain and, in particular, optimal by the criterion of quick action, which allow optimal control by the accuracy of regulation of multidimensional non-linear dynamic objects with functional uncertainties, is discussed. A method is proposed for the analytical construction of optimal control systems by the criterion of quick action for a wide class of multidimensional nonlinear dynamic objects with functional uncertainties, unstable objects; no minimal-phase objects, neutral object and objects with differentiation properties. Simplicity and universality, mathematical rigor and physical validity of this method consists in usingR.R Be llman’s method and decomposing the optimal by the criterion of quick action problem into a series of simple first-order simple problems of the same type. A theoretically comprehensive solution to the robust control problem is given by the idea of constructing systems that are stable with an unlimited increase in gain. In this case, optimal systems have stability properties. Such systems are synthesized using quadratic quality functionals that are not explicitly dependent on the control signal and the restriction on the control signal. It is significant that, in contrast to continuous systems with unmeasurable perturbations and a little-known object, in which the conditions of invariance require the use of infinitely large gains, in relay (discontinuous) systems, the equivalent effect is achieved using finite control actions. Since the performance problem is a particular problem of the accuracy of reproducing the input action on the control object, the established control error (including all error coefficients: by position, speed, acceleration, jerk, etc.) is theoretically strictly equal to zero if external and internal interference, acting only on the control object, but not on the control system, including sensors of state variables of the control object or the input signal of the task. However, due to the inertia of the object, there can be no talk of accuracy in the transient process of working out the input signal of the task, even if it is optimal in terms of the criterion of fast action.

About the Authors

B. V. Sukhinin
The Tula state university
Russian Federation
Tula, 300034


V. V. Surkov
The Tula state university
Russian Federation

Dr.Sci.Tech., Professor

Tula, 300034



References

1. Degtyarev G. P., Fajzutdinov R. N., Spiridonov I. O. Mnogokriterial’nyj sintez robastnogo regulyatora nelinejnoj mekhanicheskoj sistemy, Mekhatronika, avtomatizaciya, upravlenie, 2018, vol. 19, no. 11, pp. 691—698 (in Russian).

2. Rustamov G. A., Farhadov V. G., Rustamov R. G. Issledovanie K∞-robastnyh sistem pri ogranichennom upravlenii, Mekhatronika, avtomatizaciya, upravlenie, 2019, vol. 20, no. 11, pp. 699—706 (in Russian).

3. Furtat I. B., Gushchin P. A., Peregudin A. A. Algoritm upravleniya po vyhodu nelinejnymi sistemami s kompensaciej vozmushchenij i pomekh izmereniya,Mekhatronika, avtomatizaciya, upravlenie, 2019, vol. 20, no. 1, pp. 3—15 (in Russian).

4. Gajvoronskij S. A., Ezangina T. A., Hozhaev I. V., Nesenchuk A.A. Opredelenie vershinnyh polinomov dlya analiza stepeni robastnoj ustojchivosti interval’noj sistemy, Mekhatronika, avtomatizaciya, upravlenie, 2019, vol. 20, no. 5, pp. 266—273 (in Russian).

5. Guay M., Adetola V., DeHaan D. D. Robust and Adaptive Model Predictive Control of Nonlinear Systems. Publishing hous: The Institution of Engineering and Technology. Series: IET control robotics and sensors ser. 83, Categories: Mathematics, Automatic Control Theory, 2015, 269 p.

6. ManchesterZ., Kuindersma S. Robust direct trajectory optimization using approximate invariant funnels, Auton Robot, 2019, vol. 43, pp. 375—387.

7. Xiaojing Zhang, Maryam Kamgarpour, Angelos Georghiou, Paul Goulart, John Lygeros. Robust optimal control with adjustable uncertainty sets, Automatica, 2017, vol. 75, pp. 249—259.

8. Villanueva M. E., Quirynen R., Diehl M., Chachuat B., Houska B. Robust MPC via min—max differential inequalities, Automatica, 2017, vol. 77, pp. 311—321.

9. Singh A. Majumdar, Slotin J. J., Pavone M. Robust onlinemotion planning via contraction theory and convex optimization, Proc. IEEE International Conf. on Robotics and Automation (ICRA). IEEE, 2017, pp. 5883—5890.

10. Limon D., Alvarado I., Alamo T., Camacho E. Robust tubebased MPC for tracking of constrained linear systems with additive disturbances, J.Pr oc. Contr., 2010, vol. 20, no. 3, pp. 248—260.

11. Esse na temu " Nauka i nravstvennost’", available at: https://studopedia.ru/19_62719_essentsii-chistoy-vibratsii.html (in Russian).

12. Chto takoe nravstvennost’, available at: https://www.b17.ru/article/o_nravstvennosti/ (in Russian).

13. Rustamov G. A., Rustamov R. G. Osobennosti K ∞ robastnyh sistem upravlenija (Features of K ∞ -robust control systems), XVIII Mezhdunarodnaya Nauchno-prakticheskaya konf. "Nauchnoe obozrenie fiziko-matematicheskih i tekhnicheskih nauk v XXI veke" . Prospero, 2015, no. 6 (18), pp. 30—33 (in Russian).

14. Vostrikov A. S. Sintez sistem regulirovaniya metodom lokalizacii, (Synthesis of control systems by localization method), Novosibirsk, Publlishing house of NGTU, 2007, 252 p (in Russian).

15. Vostrikov A. S. Starshaya proizvodnaya i bol’shie koefficienty usileniya v zadache upravleniya nelinejnymi nestacionarnymi ob"ektami, Mekhatronika, avtomatizaciya, upravlenie, 2008, vol. 5, pp. 2—7 (in Russian).

16. Filimonov A. B., Filimonov N. B. Metod bol’shih koefficientov usileniya i effekt lokalizacii dvizhenij v zadachah sinteza sistem avtomaticheskogo upravleniya, Mekhatronika, avtomatizaciya, upravlenie, 2009, no 2, pp. 2—10. (in Russian).

17. Suhinin B. V., Surkov V. V. K voprosu o robastnyh sistemah avtomaticheskogo upravleniya, Mekhatronika, avtomatizaciya, upravlenie, 2019, vol. 20, no. 6, pp. 341—351 (in Russian).

18. Filimonov A. B., Filimonov N. B. Robastnaya korrekciya v sistemah upravleniya s bol’shim koefficientom usileniya, Mekhatronika, avtomatizaciya, upravlenie. 2014, no. 12. pp. 3—10 (in Russian).

19. Filimonov A. B., Filimonov N. B. Robust Correction of Dynamic Plants in Automatic Control Systems, Optoelectronics, Instrumentation and Data Processing, 2015, vol. 51, no. 5, pp. 1—7.

20. Filimonov A. B., Filimonov N. B. Robastnoe upravlenie s "glubokoj" obratnoj svyaz’yu, XIII Vserossijskoe soveshchanie po problemam upravleniya: Trudy IPU RAN, 2019. pp. 811—815 (in Russian).

21. Lovchakov V. I., Lovchakov E. I., Kretov E. I. Sintekh bystrodejstvuyushchih sistem upravleniya s ispol’zovaniem teorii analiticheskogo konstruirovaniya optimal’nyh regulyatorov, Mekhatronika, avtomatizaciya, upravlenie, 2016, vol. 17, no. 2, pp. 83—93 (in Russian).

22. Fel’dbaum A. A. Fundamentals of the theory of optimal automatic systems, Moscow, Nauka, 1966, 624 p (in Russian).

23. Klyuev A. S., Kolesnikov A. A. Optimization of automatic control systems for speed, Moscow, Energoizdat, 1982, 240 p. (in Russian).

24. Surkov V. V., Suhinin B. V., Lovchakov V. I., Solov’ev A. Je. Analytical’s constraction of optimum regulators by criteria of accuracy, speed, power savings, Tula, Publishing house of TulGU, 2005, 300 p. (in Russian).


Review

For citations:


Sukhinin B.V., Surkov V.V. Analytical Construction Robust Optimal Control Systems by the Criterion of Quick Action with Infinitely High Gain. Mekhatronika, Avtomatizatsiya, Upravlenie. 2020;21(8):453-463. (In Russ.) https://doi.org/10.17587/mau.21.453-463

Views: 530


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)