Preview

Мехатроника, автоматизация, управление

Расширенный поиск

Система измерения радиальных зазоров в газотурбинном двигателе с самокомпенсацией температурных воздействий на датчик

https://doi.org/10.17587/mau.21.294-303

Аннотация

Приводится описание разработанных технических средств, алгоритмов функционирования и программного обеспечения системы измерения радиальных зазоров между статорной оболочкой и торцами лопаток рабочего колеса компрессора газотурбинного двигателя, в которой реализован метод измерения с самокомпенсацией температурных воздействий на одновитковый вихретоковый датчик с чувствительным элементом в виде отрезка проводника. Благодаря применению механизма самокомпенсации удалось  минимизировать число используемых датчиков и соответствующих установочных отверстий в статорной оболочке силовой установки. Основные операции, предусмотренные самокомпенсацией, осуществляются в реальном времени на аппаратно-программном уровне. Это открывает возможность применения системы для диагностики опасных состояний газотурбинных двигателей в процессе эксплуатации силовых установок. Рассматривается раннее не изученный эффект "недокомпенсации" температурных воздействий. Эффект связан с особенностями преобразования информативного параметра одновиткового вихретокового датчика в измерительной цепи и проявляется в несовпадении функций преобразования измерительных каналов системы при нормальной и номинальной температурах. В статье предлагается способ устранения влияния указанного эффекта путем программной коррекции. Приводятся результаты экспериментальных исследований действующего макета системы измерения, характеризующие его метрологическую состоятельность и работоспособность. Для определения систематической составляющей погрешности действующего макета системы как разности заданного и вычисленного радиального зазора использовалась экспериментально снятая градуировочная характеристика, аппроксимированная полиномиальной функцией. Случайная погрешность оценивалась по отклонениям кодов от средних значений в выборке для фиксированной позиции лопатки относительно чувствительного элемента датчика при заданной величине радиального зазора. Оценка работоспособности действующего макета производилась на специализированной лабораторной установке в процессе вращения рабочего колеса реального компрессора от электропривода. В ходе экспериментов были получены количественные оценки быстродействия и точности разработанного макетного образца, подтверждающие возможность использования подобного рода систем измерения для диагностики опасных состояний газотурбинных двигателей, применяемых в энергетике.

Об авторах

В. Н. Белопухов
Институт проблем управления сложными системами Российской академии наук — обособленное подразделение Федерального государственного бюджетного учреждение науки Самарского федерального исследовательского центра Российской академии наук
Россия

канд. техн. наук

Самара





С. Ю. Боровик
Институт проблем управления сложными системами Российской академии наук — обособленное подразделение Федерального государственного бюджетного учреждение науки Самарского федерального исследовательского центра Российской академии наук
Россия

д-р техн. наук

Самара





П. Е. Подлипнов
Институт проблем управления сложными системами Российской академии наук — обособленное подразделение Федерального государственного бюджетного учреждение науки Самарского федерального исследовательского центра Российской академии наук
Россия
Самара



Ю. Н. Секисов
Институт проблем управления сложными системами Российской академии наук — обособленное подразделение Федерального государственного бюджетного учреждение науки Самарского федерального исследовательского центра Российской академии наук
Россия

д-р техн. наук

Самара



О. П. Скобелев
Институт проблем управления сложными системами Российской академии наук — обособленное подразделение Федерального государственного бюджетного учреждение науки Самарского федерального исследовательского центра Российской академии наук
Россия

д-р техн. наук

Самара





Список литературы

1. Danilchenko V. P., Lukatchev S. V., Krylov Yu. L. et al. Engeneering of aircraft gas-turbine engines, Samara, Publishing house of SamNTS RAN, 2008, 619 p.

2. Prokopets A., Revzin B. Rozhkov A. The need for diagnosis of radial clearances in gas-turbine engines, Gazoturbinnye Technologii, 2004, no. 4 (31), pp. 5—7.

3. Kuznetsov N. D., Danilchenko V. P., Reznik V. E. Radial clearances control in turbo-compressors of gas-turbine engines, Samara, Samarskiy aviatsionnyj institute, 1991, 109 p.

4. Lattime S., Steinetz B. Turbine Engine Clearance Control Systems: Current Practices and Future Directions, 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Indianapolis, USA, July 7—10, 2002.

5. Lattime S., Steinetz B., Robbie M. Test Rig for Evaluating Active Turbine Blade Tip Clearance Control Concepts, 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, Alabama, July 20—23, 2003.

6. Kratz J. L., Chapman J. W., Guo T. H. A parametric study of actuator requirements for active turbine tip clearance control of a modern high bypass turbofan engine, ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, Charlotte, USA, 26—30 June, 2017, vol. 6, V006T05A005, DOI:10.1115/GT2017-63472.

7. Simon D., Gang S., Hunter G. et al. Sensor Needs for Control and Health Management of Intelligent Aircraft Engines, ASME Turbo Expo 2004, Vienna, Austria, 14—17 June, 2004.

8. Inozemtsev A. A., Bazhin S. V., Snitko M. A. Optimization of the Radial Clearances of the Turboprop Engine of an Aviation GTE, Vestnik Dvigatelestroeniya, 2, 2012, pp. 149—154.

9. Sekisov Yu.N., Skobelev O. P. ed. Methods and tools for measuring of multi-dimensional displacements of power-plant constructional elements, Samara, Samarskij nauchnyj centr RAN, 2001, 188 p.

10. Skobelev O. P. ed. Cluster methods and tools for measuring of deformations and coordinates of blade tips displacements in gas-turbine engines, Moscow, Mashinostroenie, 2011, 298 p.

11. Skobelev O. P. ed. Cluster methods and tools for measuring of radial clearances in turbine’s flow section, Moscow, Innovatsionnoe Mashinostroenie, 2018, 224 p.

12. Belopukhov V. N., Borovik S. Yu., Kuteynikova M. M. et al. The method for measuring of radial clear-ances in gas-turbine engine with self-compensation of temperature effects on the sensor, Datchiki i Systemy, 2018, no. 4, pp. 53—59.

13. Belopukhov V. N., Borovik S. Yu., Kuteynikova M. M. et al. Measuring of radial clearances in gas-turbine engine with selfcompensation of temperature effects on the sensor. The conversion function sets of the sensor and measuring circuit, Datchiki i Systemy, 2019, no. 4, pp. 39—46.

14. Kuteynikova M. M., Podlypnov P. E. Influence of the wheel displacements on the result of radial clearances measuring by means of self-compensation of temperature effects on the sensor, Vestnik SamGTU, Seriya "Tekhnicheskie nauki", 2017, no. 4 (56), pp. 76—84.

15. Podlypnov P. E. Influence of the temperature on controlled and neighboring blades of the compressor during radial clearances measuring with self-compensation of temperature effects on the sensor, Vestnik SamGTU, Seriya "Tekhnicheskie nauki", 2018, no. 3 (59), pp. 106—117.

16. Borovik, S. Y., Podlipnov, P. E., Sekisov Y. N. et al. Influence of Disturbing Factors in a System for Measuring Radial Clearances in Gas-Turbine Engines with Temperature Self-Compensation, Optoelectronics, Instrumentation and Data Processing, 2019, no. 4 (55), pp. 388—398. https://doi.org/10.3103/S8756699019040101).

17. Belopukhov V. N., Borovik S. Yu., Kuteynikova M. M. et al. The structure and operation algorithms of the system for measuring of radial clearances with self-compensation of temperature effects, Vestnik SamGTU, Seriya "Tekhnicheskie nauki", 2018, no. 4 (60), pp. 52—65.

18. Datasheet, available at: http://www.st.com/st-web-ui/static/active/en/resource/technical/document/datasheet/DM00037051.pdf

19. Belopukhov V. N., Borovik S. Yu., Podlipnov P. E. et al. Cluster methods for measuring of radial clearances with selfcompensation of temperature effect in flow section of gas-turbine engine, XIII all-Russian conference on control problems, Moscow, Russia, June 17—20, 2019, pp. 2698—2703.

20. Belopukhov V. N., Borovik S. Yu., Podlipnov P. E. et al. Methods for preliminary data processing in the system for measuring of radial clearances with self-compensation of temperature effects on the sensor in flow section of GTE, XXI international conference "Complex Systems: Contol and Modelling Problems", Samara, Russia, 3—6 September, 2019, vol. 2, pp. 117—121.


Рецензия

Для цитирования:


Белопухов В.Н., Боровик С.Ю., Подлипнов П.Е., Секисов Ю.Н., Скобелев О.П. Система измерения радиальных зазоров в газотурбинном двигателе с самокомпенсацией температурных воздействий на датчик. Мехатроника, автоматизация, управление. 2020;21(5):295-303. https://doi.org/10.17587/mau.21.294-303

For citation:


Belopukhov V.N., Borovik S.Yu., Podlipnov P.E., Sekisov Yu.N., Skobelev O.P. System for Measuring of Radial Clearances in Gas-Turbine Engine with Self-Compensation of Temperature Effects on the Sensor. Mekhatronika, Avtomatizatsiya, Upravlenie. 2020;21(5):295-303. (In Russ.) https://doi.org/10.17587/mau.21.294-303

Просмотров: 589


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)