Method of Topological Roughness in Tasks of Research and Control of Synergetic Systems
https://doi.org/10.17587/mau.21.259-265
Abstract
About the Author
R. O. OmorovKyrgyzstan
Chief Research Officer
Bishkek, 720071, Kyrgyz Republic
References
1. Andronov A. A., Pontrjagin L. S. Grubye sistemy (Rough systems), Dokl. AN SSSR,1937, vol. 14, no. 5, pp. 247—250 (in Russian).
2. Anosov D. V. Rough systems. Topology, ordinary differential equations, dynamic systems: Collection of review articles. 2. To the 50 anniversary of institute, Proceedings of MIAS SU, vol. 169, Moscow, Nauka, 1985, pp. 59—93 (in Russian).
3. Polyak B. T., Tsypkin Ya. Z. Robust stability of linear systems. Results of science and technology, iss. Technical Cybernetics, vol. 32, Moscow, VINITI, 1991, pp. 3—31 (in Russian).
4. Peixoto M. M. On structural stability, Ann. Math., 1959, vol. 69, no 1, pp. 199—222.
5. Omorov R. O. Maximum roughness of dynamic systems, Avtomatika i Telemehanika, 1991, no 8, pp. 36—45 (in Russian).
6. Omorov R. O. Maximal coarseness of dinamical systems, Automation and Remote Control, 1992, vol. 52, no. 8, pt. 1, pp. 1061—1068.
7. Omorov R. O. Quantitative measures of roughness of dynamic systems and their application to control systems: Diss. Doctor of Engineering Sciences, Saint Petersburg, Sankt-Peterburgskij institut tochnoj mehaniki i optiki, 1992.
8. Omorov R. O. Topological roughness method: Theory and applications. I. Theory, Izv. NAN KR, 2009, no. 3, pp. 144—148 (in Russian).
9. Omorov R. O. Synergetic systems: Problems of roughness, bifurcations and catastrophs, Nauka i Novye Tehnologii, 1997, no 2, pp. 26—36 (in Russian).
10. Omorov R. O. Topological roughness of synergetic systems, Problemy Upravlenija i Informatiki, 2012, no 2, pp. 5—12 (in Russian).
11. Omorov R. O. Topological Roughness of Synergetic Systems, Journal of Automation and Information Sciences, 2012, vol. 44, pp. 61—70.
12. Omorov R. O. Theory of topological roughness of systems, Bishkek, Ilim, 2019 (in Russian).
13. Puankare A. About curves defined by differential equations, Moscow—Leningrad, Gostehizdat, 1947 (in Russian).
14. Himmel’blau D. Application nonlinear programming, Moscow, Mir, 1975 (in Russian).
15. Haken H. Synergetics: instability hierarchies in self-organizing systems and devices, Moscow, Mir, 1985 (in Russian).
16. Nikolis G., Prigozhin I. Exploring Complexity: An Introduction, Moscow, Mir, 1990 (in Russian).
17. Haken H. Synergetics: Introduction and Advanced Topics, London, Springer, 2004.
18. Penrose R. The Emperor’s New Mind: On Computers, Minds and The Laws of Physics, Мoscow, LKI, 2008 (in Russian).
19. Zang V. B. Synergetic economy. Time and change in nonlinear economic theory, Moscow, Mir, 1999 (in Russian).
20. Prigozhin I., Kondepudi D. Modern thermodynamics: From heat engines to dissipative structures, Moscow, Mir, 2002 (in Russian).
21. Andrievskii B. R., Fradkov A. L. Control of chaos: methods and applications. I. Methods, Avtomatika i Telemehanika, 2003, no. 5, pp. 3—45 (in Russian).
22. Kolesnikov A. A. Synergetic Management Methods for Complex Systems: Theory of System Synthesis, Moscow, Knizhnyj dom "LIBROKOM", 2012 (in Russian).
23. Sinai Ya. G., Shilnikov L. P. ed. Strange attractors, Moscow, Mir, 1981 (in Russian).
24. Peak D., Frame M. Chaos Under Control: The Art and Science of Complexity, New York, W. H. Freeman and Company, 1994.
25. Kapitsa S. P., Kurdyumov S. P., Malinetskii G. G. Synergetics and forecasts of the future, Moscow, Jeditorial URSS, 2001 (in Russian).
26. Petrov V. V., Gordeev A. A. Nonlinear servomechanisms, Moscow, Mashinostroenie, 1979 (in Russian).
Review
For citations:
Omorov R.O. Method of Topological Roughness in Tasks of Research and Control of Synergetic Systems. Mekhatronika, Avtomatizatsiya, Upravlenie. 2020;21(5):259-265. (In Russ.) https://doi.org/10.17587/mau.21.259-265