A Locomotion Mechanism for a Mobile Wall-Climbing Robot with a Hybrid Magnetic-Tape Adhesion Method
https://doi.org/10.17587/mau.21.158-166
Abstract
Keywords
About the Authors
N. V. BykovRussian Federation
Ph. D., Associate Professor, Chief of Department
105005, Moscow
N. S. Vlasova
Russian Federation
105005, Moscow
M. Yu. Gubanov
Russian Federation
105005, Moscow
D. V. Lapin
Russian Federation
105005, Moscow
References
1. Chu B., Jung K., Han C.-S., Hong D. A survey of climbing robots: locomotion and adhesion, International Journal of Precision Engineering and Manufacturing, 2010, vol. 11, no. 4, pp. 633—647.
2. Gradetsky V. G., Knyazkov M. M. The state and prospects of climbing robots development for extreme environments) Robototekhnika i Tekhnicheskaya Kibernetika, 2014, no. 1, pp. 9—16 (in Russian).
3. Berns K., Hillenbrand C., Luksch T. Climbing robots for commercial applications — a survey, Proc. of the 6th International Conference on Climbing and Walking Robots (CLAWAR 2003), Catania, Italy, 2003, pp. 771—776.
4. Schmidt D., Berns K. Climbing robots for maintenance and inspections of vertical structures — A survey of design aspects and technologies, Robotics and Autonomous Systems, 2013, vol. 61 (12), pp. 1288—1305.
5. Liu S., Gao X., Li K., Li J., Duan X. A small-sized wall-climbing robot for anti-terror scout, Proc. of the IEEE International Conference on Robotics and Biomimetics (ROBIO 2007), Sanya, China, 2007, pp. 1866—1870.
6. Akinfiev T., Armada M., Nabulsi S. Climbing cleaning robot for vertical surfaces, Industrial Robot: An International Journal, 2009, vol. 36, no. 4, pp. 352—357.
7. Batanov A. F., Gricynin S. N., Murkin S. V. Robotic systems for special operations) Spetsial’naia tekhnika, 1999, no. 6, pp. 10—17 (in Russian).
8. Aver’yanov E. V., Kovalenko B. B., Kostin A. V., Pelepas E. I., Poduraev Y. V., Yakovlev S. F. The main aspects of the creation of domestic technology wall-climbing mobile robots) Mekhatronika, Avtomatizatsiya, Upravlenie, 2013, no. 8, pp. 23—27 (in Russian).
9. Xu F., Wang X., Jiang G. Design and analysis of a wallclimbing robot based on a mechanism utilizing hook-like claws, International Journal of Advanced Robotic Systems, 2012, vol. 9, no. 6, 261.
10. Xu F., Wang B., Shen J., Hu J., Jiang G. Design and realization of the claw gripper system of a climbing robot, Journal of Intelligent and Robotic Systems, 2018, vol. 89, no. 3—4, pp. 301—317.
11. Golubev Y. F., Koryanov V. V. Extreme locomotion capabilities of insectomorphic robots, Moscow, Publishing house of Keldysh Institute of Applied Mathematics RAS, 2018 (in Russian).
12. Khirade N. R., Sanghi R. K., Tidke D. J. Magnetic wall climbing devices — a review, Proc. of International Conference of Advances in Engineering and Technology (ICAET 2014), Nagapattinam, India, 2014, pp. 55—59.
13. Lee G., Kim H., Seo K., Kim J., Sitti M., Seo T. W. Series of multilinked caterpillar track-type climbing robots, Journal of Field Robotics, 2016, vol. 33, no. 6, pp. 737—750.
14. Shen W., Gu J., Shen Y. Permanent magnetic system design for the wall-climbing robot, Applied Bionics and Biomechanics, 2006, vol. 3, no. 3, pp. 151—159.
15. Syryh N. V., Chashchuhin V. G. Wall-climbing robots with permanent-magnet contact devices: design and control concept of the contact devices, Izvestiya Akademii Nauk, Teoriya i Sistemy Upravleniya, 2019, no. 5, pp. 163—173 (in Russian).
16. Chernousko F. L. Simulation and Optimization of Crawling Robots, in Bock H. G., Phu H. X., Kostina E., Rannacher R. (eds) Modeling, Simulation and Optimization of Complex Processes, Springer, Berlin, Heidelberg, 2005, pp. 85—104.
17. Brusell A., Andrikopoulos G., Nikolakopoulos G. A survey on pneumatic wall-climbing robots for inspection, Proc. of the 24th Mediterranean Conference on Control and Automation (MED), Athens, Greece, 2016, pp. 220—225.
18. Tachkov A. A., Kalinichenko S. V., Malyhin A. Yu. Modeling and evaluation of the effectiveness of the retention system of a small-sized autonomous vertical movement robot with vacuum grippers, Mekhatronika, Avtomatizatsiya, Upravlenie, 2016, vol. 17, no. 3, pp. 178—186 (in Russian).
19. Gradetsky V. G., Knyazkov M. M., Semenov E. A., Sukhanov A. N., Chashchukhin V. G. Climbing robot for actions in underwater conditions, Journal of Advanced Research in Technical Science, 2018. Vol. 10 (1). P. 65—71.
20. Chen X. Q., Wager M., Nayyerloo M., Wang W., Chase J. G. A novel wall climbing robot based on Bernoulli effect, Proc. of IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA 2008), Beijing, China, 2008, pp. 210—215.
21. Koo I. M., Trong T. D., Lee Y. H., Moon H., Koo J., Park S. K., Choi H. R. Development of wall climbing robot system by using impeller type adhesion mechanism, Journal of Intelligent and Robotic Systems, 2013, vol. 72, pp. 57—72.
22. Nishi A., Miyagi H. Propeller type wall-climbing robot for inspection use, Proc. of the 10th International Symposium on Automation and Robotics in Construction, Houston, USA, 1993, pp. 189—196.
23. Chen R., Liu R., Chen J., Zhang J. A gecko inspired wallclimbing robot based on electrostatic adhesion mechanism, Proc. of the IEEE International Conference on Robotics and Biomimetics (ROBIO 2013), Shenzhen, China, 2013, pp. 396—401.
24. Kim S., Spenko M., Trujillo S., Heyneman B., Santos D., Cutkosky M. R. Smooth vertical surface climbing with directional adhesion, IEEE Transactions on Robotics, 2008, vol. 24, no. 1, pp. 65—74.
25. Aksak B., Murphy M. P., Sitti M. Adhesion of biologically inspired vertical and angled polymer microfiber arrays, Langmuir, 2007, vol. 23, no. 6, pp. 3322—3332.
26. Unver O., Sitti M. Flat dry elastomer adhesives as attachment materials for climbing robots, IEEE Transactions on Robotics, 2010, vol. 26, no. 1, pp. 131—141.
27. Osswald M., Iida F. Design and control of a climbing robot based on hot melt adhesion, Robotics and Autonomous Systems, 2013, vol. 61, no. 6, pp. 616—625.
28. Wang L., Graber L., Iida F. Large-payload climbing in complex vertical environments using thermoplastic adhesive bonds, IEEE Transactions on Robotics, 2013, vol. 29, no. 4, pp. 863—874.
29. Wiltsie N., Lanzetta M., Iagnemma K. A controllably adhesive climbing robot using magnetorheological fluid, Proc. of the IEEE International Conference on Technologies for Practical Robot Applications (TePRA), Woburn, USA, 2012, pp. 91—96.
30. Dong W., Wang H., Li Z., Jiang Y., Xiao J. Development of a wall-climbing robot with biped-wheel hybrid locomotion mechanism, Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2013), Tokyo, Japan, 2013, pp. 2333—2338.
31. Koh K. H., Sreekumar M., Ponnambalam S. G. Hybrid electrostatic and elastomer adhesion mechanism for wall climbing robot, Mechatronics, 2016, vol. 35, pp. 122—135.
32. Xu L., Liu J., Xu J., Wu X., Fan S. Design and experimental study of a bioinspired wall-climbing robot with multilocomotion modes, Proc. of the ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS 2018), San Antonio. USA, 2018, pp. 1—6.
33. Vlasova N. S., Bykov N. V. The problem of adhesion methods and locomotion mechanism development for wall-climbing robots, arXiv:1905.09214, 2019, https://arxiv.org/abs/1905.09214.
34. Silva M. F., Machado J. A. T., Tar J. K. A survey of technologies for climbing robots adhesion to surfaces, Proc. of the 6th International Conference on Computational Cybernetics (ICCC 2008), Stara Lesná, Slovakia, 2008, pp. 127—132.
35. Nansai S., Mohan R. E. A survey of wall climbing robots: recent advances and challenges, Robotics, 2016, vol. 5, no. 3, 5030014.
36. Fu Y., Li Z., Wang S. A wheel-leg hybrid wall climbing robot with multi-surface locomotion ability, Proc. of the IEEE International Conference on Mechatronics and Automation, Takamatsu, Japan, 2008, pp. 627—632.
37. Tavakoli M., Lourenço J., Viegas C., Neto P., de Almeida A. T. The hybrid OmniClimber robot: wheel based climbing, arm based plane transition, and switchable magnet adhesion, Mechatronics, 2016, vol. 36, pp. 136—146.
38. Tovarnov M. S., Bykov N. V. A Mathematical Model of the Locomotion Mechanism of a Mobile Track Robot with the Magnetic-Tape Principle of Wall Climbing, Problemy mashinostroeniya i nadezhnosti mashin, 2019, vol. 48, no. 3, pp. 250—258 (in Russian).
Review
For citations:
Bykov N.V., Vlasova N.S., Gubanov M.Yu., Lapin D.V. A Locomotion Mechanism for a Mobile Wall-Climbing Robot with a Hybrid Magnetic-Tape Adhesion Method. Mekhatronika, Avtomatizatsiya, Upravlenie. 2020;21(3):158-165. (In Russ.) https://doi.org/10.17587/mau.21.158-166