Development and Research of Mathematical Models of Deployment of Mobole Parts of Transformable Space Construction. Part II
https://doi.org/10.17587/mau.21.117-128
Abstract
Keywords
About the Authors
S. A. KabanovRussian Federation
B. A. Zimin
Russian Federation
F. V. Mitin
Russian Federation
Mitin Fedor, Ph.D. Student
References
1. Ponomarev S. V. Transformable reflectors of spacecraft antennas, Vestn. Tom. gos. un-ta. Matematika i mehanika, 2011, no. 4(16), pp. 110—119 (in Russian).
2. Lopatin A. V., Rutkovskaja M. A. Overview of the designs of modern transformed space antennas (Part 1), Vestnik SibGAU, 2007, no. 2, pp. 78—81 (in Russian).
3. Krasovskii A. A. ed. Handbook on the theory of automatic control, Moscow, Nauka, 1987, 712 p. (in Russian).
4. Fedorenko R. P. Approximate solution of optimal control problems, Moscow, Nauka, 1978, 488 p. (in Russian).
5. Malyshev V. V., Kabanov D. S. The algorithm for the correction of the control structure of the automatic underwater vehicle to build a reachable area, Izv. Vuzov. Priborostroenie, 2012, vol. 55, no. 7, pp. 21—27 (in Russian).
6. Kabanov S. A. Upravlenie sistemami na prognoziruyushchih modelyah (Systems control on predictive models). SPb: Izd-vo S.-Peterburgskogo universiteta, 1997, 200 p. (in Russian).
7. Kabanov S. A., Kabanov D. S. Control problems with the optimization of the parameters of predictive models, S.Peterburg, Publishing house of Balt. gos. tehn. un-t, 2017, 110 p. (in Russian).
8. Svetlickij V. A. Mechanics of flexible rods and threads, Moscow, Mashinostroenie, 1978, 222 p. (in Russian).
9. Sankin Ju. N. Lectures on theoretical mechanics, Ul’janovsk, UlGTU, 2012, 388 p. (in Russian).
10. Merkin D. R. Introduction to the mechanics of a flexible thread, Moscow, Nauka. Glavnaja redakcija fiziko-matematicheskoj literatury, 1980, 240 p. (in Russian).
11. Sal’vadori M. D. Numerical methods in engineering, Moscow, IL, 1955, 247 p. (in Russian).
12. Kabanov S. A ., Mitin F. V., Krivushov A . I., Ulybushev E. A. Piezoactuator control for adjusting the reflecting surface of a space-based reflector, Izvestija vysshih uchebnyh zavedenij. Aviacionnaja tehnika, 2018, no. 4, pp. 111—116 (in Russian).
13. Pankratov V. M., Barulina M. A., Krys’ko A. V. Influence of detuning of partial frequencies of sensitive elements on the amplitude-frequency characteristics of micromechanical gyroscopes, Izv. vuzov. Aviacionnaja tehnika, 2017, no. 2, pp. 99—105 (in Russian).
14. Belousov E. O. Noise cancellation method for microelectromechanical angular velocity sensor shema processing, Tr. MAI, 2016, no. 90, pp. 1—19 (in Russian).
15. Hramcov A. M. Stress-strain state of interacting elements of a piezo-actuator: Avtoref. dis. ... kand. fiz.-mat. Nauk, Tomsk, Tomskij gosudarstvennyj universitet, 2017, 24 p. (in Russian).
16. Bobcov A. A. i dr. Executive devices and systems for microdisplacements, SPb., SPbGU ITMO, 2011, 131 p. (in Russian).
17. Hasan Z. Shape and Failure Control of Composite Laminates Using Piezoelectric Actuators, Proc. of the COMSOL Conference, Oct. 7—9, 2010, Boston, pp. 314—321.
18. Hasan Z., Muliana A. Analysis and Control of Smart Composite Laminates Using Piezoelectric Materials, Proc . of the 6th Annual Technical Conference of the American Society for Composites 2011: The 2nd Joint US—Canada Conference on Composites, Sept. 26—28, 2011, Montreal, Quebec, Canada, vol. 1, pp. 530—546.
19. Gajbhiye S. C., Upadhyay S. H., Harsha S. P. Nonlinear Vibration Analysis of Piezo-Actuated Flat Thin Membrane, Journal of Vibration and Control, 2015, vol. 21, iss. 6, pp. 1162—1170.
20. Nikol’skij A. A. The exact two-channel watching electric drives with piezocompensators, Moscow, Znergoatomizdat, 1988, 160 p. (in Russian).
21. Feldbaum A. A. Optimal processes in automatic control systems, Avtomatika i telemekhanika, 1953, vol. 14, no. 6, pp. 712—728 (in Russian).
22. Malyshev V. V. Optimization methods in problems of system analysis and management: Tutorial, Moscow, Publishing house of MAI-PRINT, 2010, 440 p. (in Russian).
23. Voldek A. I. Electric machines. Textbook for high school students. tech. institutions, Leningrad, Jenergija, 1978, 832 p. (in Russian).
24. Kundur P. Power system stability and control, Mc. GrawHoll, Inc, 1994, 1176 p.
25. Fedor Mitin, Alexey Krivushov (2018). Application of Optimal Control Algorithm for DC Motor, Proceedings of the 29th DAAAM International Symposium, pp. 0762-0766, B. Katalinic (Ed.), Published by DAAAM International, ISBN 978-3-902734-20-2, ISSN 1726-9679, Vienna, Austria DOI: 10.2507/29th.daaam.proceedings110.
26. Gridin V. M. Torque contactless DC motors with discrete and discrete analogue control by rotor position, Jelektrichestvo, 2017, no. 4, pp. 50—55 (in Russian).
27. Guljaev I. V., Volkov A. V., Popov A. A., Ionova E. I., Bobrov M. A. Comparative review of a permanent-magnet synchronous motor and a brushless DC motor with direct torque control, Nauchno-tehnicheskij vestnik Povolzh’ja, 2015, no. 6, pp. 123—128 (in Russian).
28. Pongfai J., Assawinchaichote W. Optimal PID parametric auto-Adjustment for BLDC motor control systems based on artificial intelligence, 2017 International Electrical Engineering Congress, iEECON 2017 8075892
29. Hou H., Yao W., Zhang W. A Novel Control Strategy of Single Phase Brushless DC Motor for Automotive Air Conditioning, 2016 IEEE Vehicle Power and Propulsion Conference, VPPC 2016 — Proceedings 7791581.
30. Rentjuk V. Dc motor control, Komponenty i Tehnologii. 2014, no. 10 (159), pp. 110—114 (in Russian).
31. Philo’s Home Page [Electronic resource]: NXT® motor internals, available at: http://www.philohome.com/nxtmotor/ nxtmotor.htm (date of the application 16.02.2019).
32. Petrov Ju. P. Optimal control of the electric drive, taking into account the restrictions on heating, Leningrad, Jenergija, 1971, 144 p. (in Russian).
33. Kabanov S. A., Krivushov A. I., Mitin F. V. Modeling of joint deployment of units of the large-sized transformable reflector of space basing, SPIIRAS Proceedings, 2017, vol. 5(54), pp. 130—151 (in Russian).
34. Kabanov S. A., Emel’janov V. Ju., Mitin F. V. Optimization of the dynamics of the system for creating the shape of largesize transformed space-based antennas, Voprosy Radiojelektronikim 2016, no. 8, ser. OT, iss. 6, pp. 54—58 (in Russian).
Review
For citations:
Kabanov S.A., Zimin B.A., Mitin F.V. Development and Research of Mathematical Models of Deployment of Mobole Parts of Transformable Space Construction. Part II. Mekhatronika, Avtomatizatsiya, Upravlenie. 2020;21(2):117-128. (In Russ.) https://doi.org/10.17587/mau.21.117-128