Dialogue System of Controlling Robot Based on the Theory of Finite-State Automata
https://doi.org/10.17587/mau.20.686-695
Abstract
About the Authors
Yin ShuaiRussian Federation
Post-Graduate Student of Robotic Systems and Mechatronics Department
A. S. Yuschenko
Russian Federation
References
1. Jurafsky D., Martin J. H. Speech and Language Processing: An introduction to natural language processing, computational linguistics, and speech recognition, Pearson, 2014, pp. 273—543.
2. Sergienko R. Text Classification for Spoken Dialogue Systems, Institute of Telecommunications and Institute of Artificial Intelligence, 2016, pp. 17—58.
3. Mansour A. H., Salh G. Z. A., Mohammed K. A. Voice Recognition using Dynamic Time Warping and Mel-Frequency Cepstral Coefficients Algorithms, International Journal of Computer Applications, 2015, pp. 34—41.
4. Yu Z. S., Kobayashi H. An Efficient Forward-Backward Algorithm for an Explicit-Duration Hidden Markov Model, IEEE Signal Processing Letters, 2003, pp. 11—14.
5. Tu S. Derivation of Baum-Welch Algorithm for Hidden Markov Models, available at: https://people.eecs.berkeley. edu/~stephentu/writeups/hmm-baum-welch-derivation.pdf
6. Tao C. A generalization of discrete hidden Markov model and of Viterbi algorithm, Department of Computer Science, 1992, pp. 1381—1387.
7. Rabiner L. R. A tutorial on hidden Markov models and selected applications in speech recognition, Proceeding of the IEEE, 1989, pp. 257—286.
8. Rabiner L., Juang B. H. Fundamentals of Speech Recognition, Prentice-Hall, Upper Saddle River, 1993, pp. 321—386.
9. Arisoy E., Sainath T., Kingsbury B., Ramabhadean B. Deep neural network language modela, In proceedings of the Joint Human Language Technology Conference and the North American Chapter of the Association of Computational Linguistics Workshop, 2012, pp. 20—28.
10. Dong Y., Li D. Automatic Speech Recognition (A Deep Learning Approach), Springer-Verlag, London, 2015, pp. 13—48.
11. Pauls A., Klein D. Faster and smaller N-gram language modelas, Annual Meeting of the Association for Computation Linguistics: Human Language Technologies, 2011, pp. 258—267.
12. Yuschenko A. S. Interactive robot control based on fuzzy logic, Proceedings of the international scientific-technical conference "Extreme Robotics", September 25—26 2012, St. Petersburg, Polytechnic service, 2012, pp. 29—36 (in Russian).
13. Meza-Ruiz I. V., Riedel S., Lemon O. Spoken language understanding in dialogue systems, using a 2-layer Markov logic network, Improving semantic accuracy. Semantics and Pragmatics of Dialogue (LONDIAL’08), 2008, pp. 191—192.
14. Williams J. D. Web-style ranking and slu combination for dialog state tracking, Annual Meeting of the Special Interest Group on Discourse and Dialogue, 2014, pp. 282—291.
15. Henderson M., Thomson B., Young S. J. Deep Neural Network Approach for the Dialog State Tracking Challenge, Proceedings of SIGDIAL, 2013, pp. 467—471.
16. Thomson B., Young S. Bayesian update of dialogue state: A POMDP framework for spoken dialogue systems, Computer Speech & Language, 2010, pp. 562—588.
17. Pieraccini R., Huerta M. J. Where do we go from here? research and commercial spoken dialog systems, SIGdial Workshop on Discourse and Dialogue, 2005, рp. 1—24.
18. Thomson B., Young S. Bayesian update of dialogue state: A POMDP (the partially observable Markov decision process) framework for spoken dialogue systems, Computer Speech & Language, 2010, рp. 562—588.
19. Yuschenko A. S., Morozov D. N., Zhonin A. A. Speech control for mobile Robotic systems, Proc.of 4th International Conference "Mechatronic Systems and Materials" MSM-2008, Byalostok, Poland, July, 2008, pp. 14—17.
20. Zhonin A. A. Algorithm for learning the dialogue manager of the dialogue robot control system, Integrated models and soft computing in artificial intelligence. Sat scientific papers of the international conference, Moscow, Phys. mat. Lit. 2011, pp. 395—406 (in Russian).
21. Yuschenko A. S. Intellectual planning in the activities of robots, Mekhatronika, Avtomatizatsiya, Upravlenie, 2005, no. 3, pp. 5—18 (in Russian)
22. Huang J., Rathod V., Sun C., Zhu M. l., Korattikara A. Speed/accuracy trade-offs for modern convolutional object detectors, Computer Vision and Pattern Recognition, 2017.
Review
For citations:
Shuai Y., Yuschenko A.S. Dialogue System of Controlling Robot Based on the Theory of Finite-State Automata. Mekhatronika, Avtomatizatsiya, Upravlenie. 2019;20(11):686-695. (In Russ.) https://doi.org/10.17587/mau.20.686-695