Конструкция адаптивного наблюдателя для выявления и моделирования ошибок датчика
https://doi.org/10.17587/mau.20.515-523
Аннотация
Представлен новый подход к выявлению ошибок датчиков, их моделированию и оценке состояния. Рассматриваемая система представляет собой линейную политопную систему с изменяющимися параметрами. Основная идея заключается в формировании нового надежного адаптивного наблюдателя в рамках поликвадратического подхода с новым релаксационным множеством. Достаточные условия задаются набором линейных матричных неравенств, которые гарантируют устойчивость системы и асимптотическую сходимость оценки ошибки. Для иллюстрации использования предложенных методов приведен пример моделирования, в котором осуществляется идентификация постоянной и переменной ошибки датчика.
Об авторах
Н. БедиуиТунис
доц.
г. Тунис, Тунис
Р. Уимли
Тунис
PhD
г. Тунис, Тунис
М. Бесбес
Тунис
проф.
г. Тунис, Тунис
Список литературы
1. Edwards C. A comparison of sliding mode and unknown input observers for fault reconstruction, Proc. of the 43rd IEEE Conference on Decision and Control, 2004, pp. 5279—5284.
2. Blanke M., Kinnaert M., Lunze J., Staroswiecki M. Diagnosis and Fault-Tolerant Control. 2nd Edition, Springer-Verlag, Berlin Heidelberg, 2006.
3. De Oca S. M., Rotondo D., Nejjari F., Puig V. Fault Estimation and Virtual Sensor FTC Approach for LPV Systems, 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), Orlando, FL, USA, December 12—15, 2011.
4. Da Silva J. C., Saxena A., Balaban E., Goebel K. A knowledge-based system approach for sensor fault modeling, detection and mitigation, Expert Systems with Applications 39, 10977—10989, Elsevier 2012.
5. Mattone R., De Luca A. Nonlinear Fault Detection and Isolation in a Three-Tank Heating System, IEEE Transaction on Control Systems Technology, November 2006, vol. 14, no. 6.
6. Zhen-Hua W., Mickael R., Didier T., Yi S. Sensor Fault Estimation Filter, Design for Discrete-time Linear Time-varying Systems, Acta Automatica Sinica, October, 2014, vol. 40, no. 10.
7. Noura H., Sauter D., Hamelin F., Theilliol D. Fault-tolerant control in dynamic systems: Application to winding machine, IEEE control system magazine, February 2000.
8. Reece S., Roberts S., Claxton C., Nicholson D. Multisensor fault recovery in the presence of known and unknown faults, Proceedings of the 12th International Conference on Information Fusion, 2009, pp. 1695—1703.
9. Isermann R. Fault-diagnosis systems: an introduction from fault detection to fault tolerance, Springer Verlag, 2006.
10. Blanke M., Kinnaert M., Lunze J., Staroswiecki M. Diagnosis and fault-tolerant control, Springer Verlag, 2003.
11. Reppa V., Polycarpou M. M. Adaptive Approximation for Multiple Sensor Fault Detection and Isolation of Nonlinear Uncertain Systems, IEEE Transaction on Neural Networks and Learning Systems, January 2014, vol. 25, no. 1.
12. Venkatasubramanian V., Rengaswamy R., Kavuri S. N. A review of process fault detection and diagnosis, Part II: Qualitative models and search strategies, Computers and Chemical Engineering, 2003, vol. 27, pp. 313—326.
13. Venkatasubramanian V., Rengaswamy R., Kavuri S. N. A review of process fault detection and diagnosis: Part I: Quantitative model-based methods, Computers and Chemical Engineering, March 2003, vol. 27, iss. 3, pp. 293—311.
14. Wang Z., Rodrigues M., Theilliol D., Shen Y. Fault Estimation for A Class of Discrete-Time Nonlinear Systems, 19th IFAC World Congress, IFAC’14, Cape Town, South Africa, Aug 2014.
15. Reppa V., Polycarpou M. M., Panayiotou C. G. A Distributed Architecture for Sensor Fault Detection and Isolation using Adaptive Approximation, WCCI 2012 IEEE World Congress on Computational Intelligence, Brisbane, Australia, June, 10—15, 2012.
16. Samy I., Postlethwaite I., Da-WeiGu I. Survey and application of sensor fault detection and isolation scheme", Control Engineering Practice 19, Elsevier Ltd, 2011, pp. 658—674.
17. Zhang K., Jiang B., Cocquempot V. Fast adaptive fault estimation and accommodation for nonlinear time-varying delay systems, Asian Journal of Control, November 2009, vol. 11, no. 6, pp. 643—652.
18. Astorga-Zaragoza C.-M., Theilliol D., Ponsart J.-C., Rodrigues M. Sensor fault diagnosis for a class of LPV descriptor systems, 7th Workshop on Advanced Control and Diagnosis, Poland, 2009.
19. Zhang K., Jiang B., Cocquempot V. Adaptive Observerbased Fast Fault Estimation, International Journal of Control, Automation, and Systems, June 2008, vol. 6, no. 3, pp. 320—326.
20. Zhang X. Sensor Bias Fault Detection and Isolation in a Class of Nonlinear Uncertain Systems Using Adaptive Estimation, IEEE Transaction on Automatica Control, May 2011, vol. 56, no. 5.
21. Ichalal D., Mammar S. On Unknown Input Observers for LPV Systems, IEEE Transactions on Industrial Electronics, 2015.
22. Toth R., Willems J., Heuberger P., Van den Hof P. A behavioral approach to LPV systems, Proceedings of the European Control Conference, Budapest, Hungray, 2015—2020, August, 2009.
23. Zhang K., Jiang B., Cocquempot V. Adaptive Observerbased Fast Fault Estimation, International Journal of Control, Automation, and Systems, 2008, vol. 6, no. 3, pp. 320—326.
24. Krokavec D., Filasova A., Serbak V., Liscinsky P. An enhanced approach to actuator fault estimation design for linear continuous-time systems, European Workshop on Advanced Control and Diagnosis, Journal of Physics: Conference Series 570 (2014) 072002.
25. Cao Y., Lin Z. A Descriptor System Approach to Robust Stability Analysis and Controller Synthesis, IEEE Transaction on automatic control, November, 2004, vol. 49, no. 11.
26. Geromel J., Colaneri P. Robust stability of time varying polytopic systems, Systems and control letters, 55:81—85. 2006.
27. Boyd S. P., Ghaoui L. E., Feron E., Balakrishnam V. Linear Matrix Inequalities in System and Control Theory, the Society for Industrial and Applied Mathematics, 3600 University City Science Center, Philadelphia, Pennsylvania 19104-2688, vol. 15, 1994.
28. Xie W. H2 gain scheduled state feedback for LPV system with new LMI formulation, IEE Proc.-Control Theory Appl., November 2005, vol. 152, no. 6.
29. Rodrigues M., Theilliol D., Sauter D. Design of an active fault tolerant control for nonlinear systems described by a multimodel representation, 2005; 1579—1584.
30. Zhang X., Parisini T., Polycarpou M. Sensor bias fault isolation in a class of nonlinear systems, IEEE Trans. Autom. Control, Mar. 2005, vol. 50, no. 3, pp. 370—376.
31. André P., Rosa N. E. Multiple-Model Adaptive Control of Uncertain LPV Systems, Ph.D thesis, Universidade tcnica de Lisboa, Instituto Superior Tcnico, 2011.
32. Kwong W. A., Passino K. M., Laukoen E. G., Yurkovich S. Expert Supervision of Fuzzy Learning Systems for Fault Tolerant Aircraft Control, Special Issue on Fuzzy Logic in Engineering Applications, Proceedings of the IEEE, March 1995, vol. 83, no. 3, pp. 466-483.
33. Ganguli S., Marcos A., Balas G. Reconfigurable lpv control design for boeing 747-100/200 longitudinal axis, Proceedings of the American Control Conference ACC’02, 2002, pp. 3612—3617.
34. Eryurek E., Upadhyaya B. R. An integrated fault tolerant control and diagnostics system for nuclear power plants, Proceedings of the Topical Meeting on Computer Based Human Support Systems: Technology, Methods and Future, 1995, pp. 267—274.
35. Boyd S., El Ghaoui L., Feron E., Balakrishnan V. Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics, Vol 15, Philadelphia, PA 1994.
36. Zemouch A., Rajamani R., Boulkroune B., Rafaralaby H., Zasadzinski M. Convex Optimization Based Dual Gain Observer for Lipschitz Nonlinear Systems, American Control Conference (ACC), Boston Marriott, USA, July 6—8, 2016.
Рецензия
Для цитирования:
Бедиуи Н., Уимли Р., Бесбес М. Конструкция адаптивного наблюдателя для выявления и моделирования ошибок датчика. Мехатроника, автоматизация, управление. 2019;20(9):515-523. https://doi.org/10.17587/mau.20.515-523
For citation:
Bedioui N., Houimli R., Besbes M. Adaptive Observer Design for Sensor Fault Detection and Reconstruction. Mekhatronika, Avtomatizatsiya, Upravlenie. 2019;20(9):515-523. https://doi.org/10.17587/mau.20.515-523