Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Two-Axis Solid-State Microgyroscope on Surface Acoustic Waves

https://doi.org/10.17587/mau.20.299-307

Abstract

This article focuses on the development of a two-axis solid state micro gyroscope (SMG) on surface acoustic waves (SAW). The described gyroscope belongs to the category of inexpensive sensing elements featuring a high degree of longtime overload stability. This advantage seems to make SAW SMGs a priority choice for navigation and control systems functioning in severe overload environments of up to 65,000 g. As of today SAW SMGs are designed according to a number of known principles. Such SMGs may also operate on standing SAWs or traveling SAWs. This article addresses the first gyro type. Unfortunately, the existing standing SAW SMGs share a common limitation of measuring angular rates in relation to one axis only. This research attempts to introduce an innovative two-axis standing SAW SMG. The influence of the basis rotation on the parameters of the elastic waves traveling within the substrate layer was carefully studied. Incident and reflected wave models were also elaborated. The numerical simulation results demonstrate the effects of the basis rotation on the complex factors of the volume waves reflected by the substrate layer and on the phase velocity and frequency thereof as well as on the oscillation amplitude of the particles involved in SAW transition, and on the elliptical particle movement path configuration. Also, the SAW SMG is compared to the existing micromechanical gyroscopes, and the basic SAW SMG production technologies are reviewed.

About the Authors

V. P. Sizov
Rostov-on-Don Research Institute of Radio Communication
Russian Federation


V. N. Pogorelov
Rostov-on-Don Research Institute of Radio Communication; People’s Friendship University of Russia (RUDN) University
Russian Federation

Corresponding author: Pogorelov Vadim A., Ph. D., Associate Professor

Rostov-on-Don, 344038



Yu. V. Vakhtin
Rostov-on-Don Research Institute of Radio Communication
Russian Federation


References

1. Peshekhonov V. G. Problemy i perspektivy sovremennoj giroskopii (Problems and Prospects of Modern Gyroscopics), Izv. VUZ. Priborostroenie, 2000, vol. 43, no. 1—2, pp. 49—55 (in Russian).

2. Volyncev A. A., Dudko L. A., Kazakov B. A., Kozlov V. V. et al. Opyt sozdaniya vysokotochnyh poplavkovyh giropriborov, primenyaemyh v sistemah uglovoj orientacii i stabilizacii kosmicheskih apparatov i stancij (The Experience of Creating High Precision Floated Gyroscopes for Use in Angular Orientation and Stabilization of Space Vehicles), Giroskopiya i Navigaciya, 2004, no. 1 (44), pp. 45—57 (in Russian).

3. Doronin V. P., Mezencev A. P., Novikov L. Z., Reshetnikov V. I. et al. Giroskopicheskie chuvstvitel’nye ehlementy dlya sistem upravleniya orientaciej i stabilizacii orbital’nyh kosmicheskih apparatov (Gyroscopic Sensing Elements for Orbit Space Vehicles’ Orientation Stabilization Control Systems), VIII Sankt-Peterburgskaya mezhdunarodnaya konferenciya po integrirovannym navigacionnym sistemam, SPb., CNII "Ehlektropribor", 2001, pp. 17—29 (in Russian).

4. Barbour N., Anderson R., Connelly J., Hanson D., Kourepenis A., Sitomer J., Ward P. Ward Inertial MEMS System Applications / RTO lecture series 232 (2004) pre-prints.

5. Coskren D., Easterly T., Polutchko R. Low-Cost GPS/ INS Guidance for Navy Munitions Launches, GPS World, Vol. 16, Iss. 9, September 2005.

6. Grishin Yu. Puti sovershenstvovaniya artillerijskogo vooruzheniya osnovnyh boevyh korablej VMS SSHA (Ways of Improving of US Navy Main Battleship Artillery Armaments), Zarubezhnoe Voennoe Obozrenie, 2011, no. 4, pp. 78—83 (in Russian).

7. Rusinov V. Artillerijskie boepripasy povyshennoj tochnosti: istoriya, sostoyanie, razvitie (Increased Accuracy Artillery Munitions: History, Current State, Development), Zarubezhnoe Voennoe Obozrenie, 2012, no. 6, pp. 48—53 (in Russian).

8. Rusinov V. Artillerijskie boepripasy povyshennoj tochnosti: istoriya, sostoyanie, razvitie (Increased Accuracy Artillery Munitions: History, Current State, Development) Zarubezhnoe Voennoe Obozrenie, 2012, no. 7, pp. 44—50 (in Russian).

9. Il’in S. Upravlyaemoe aviacionnoe oruzhie malogo kalibra (Guided Small Caliber Aviation Weapons), Zarubezhnoe Voennoe Obozrenie, 2012, no. 12, pp. 59—64 (in Russian).

10. Kalinichev B. Osnovnye napravleniya razvitiya za rubezhom reaktivnyh sistem zalpovogo ognya (Main Guidelines of MultipleLaunch Rocket System Development in Foreign Countries), Zarubezhnoe Voennoe Obozrenie, 2015, no. 11, pp. 51—59 (in Russian).

11. Raspopov V. Ya. Mikromekhanicheskie pribory (Micromechanical Instruments), Tula, Tul. gos. universitet. 2002, 389 p. (in Russian).

12. Luk’yanov D. P., Filatov Yu. V., Shevchenko S. V., Shevel’ko M. M. et al. Sovremennoe sostoyanie i perspektivy razvitiya tverdotel’nyh mikrogiroskopov na poverhnostnyh akusticheskih volnah (Current State and Development Prospects of Solid State Gyroscopes on Surface Acoustic Waves), Giroskopiya i Navigaciya, 2011, no. 3(74), pp.75—87 (in Russian).

13. Kurosawa M., Fukuda Y., Takasaki M., Higuchi T. A surface-acoustic-wave gyro sensor // Sensors Actuators, vol. A66, no. 1, pp. 33—39, 1998.

14. Patent № 2543706, Rossiya, 2015. Mikroakustomekhanicheskij giroskop (Micro-Acoustic-Mechanical Gyroscope), Vahtin YU. V., Miroshnichenko I. P., Sizov V. P., Pogorelov V. A. (in Russian).

15. Patent № 6516665 B1, US, 2003. Micro-electro-mechanical gyroscope, V. K. Varadan, P. B. Xavier, W. D. Suh, J. S. Kollakompil et al. (in Russian).

16. Novackij V. Teoriya uprugosti (Theory of elasticity), Moscow, Mir, 1975, 872 p. (in Russian).

17. Sizov V. P., Pogorelov V. A., Vahtin Yu. V. Vliyanie vrashcheniya na parametry uprugih voln, rasprostranyayushchihsya v podlozhke tverdotel’nogo giroskopa na akusticheskih volnah (Influence of Rotation on the Acoustic Wave Parameters of the Acoustic Waves Traveling in the Solid State Acoustic Gyroscope Substrate), Giroskopiya i Navigaciya, 2015, no. 4(91), pp. 77—90 (in Russian).

18. Shutilov V. A. Osnovy fiziki ul’trazvuka.(Fundamentals of Ultrasound Physics), Leningrad, Izdatel’stvo leningradskogo universiteta, 1980, 280 p. (in Russian).

19. Wang W., Oh H., Lee K., Yoon S., Yang S. Enhanced Sensitivity of Novel Surface Acoustic Wave Microelectromechanical System-Interdigital Transducer Gyroscope, JJAP, 2009, no. 48.

20. Luk’yanov D. P., Raspopov V. Ya., Filatov Yu. V. Prikladnaya teoriya giroskopov (The Gyroscope Applied Theory), SPb., GNC RF OAO "Koncern "CNII "EHlektropribor", 2015, 316 p. (in Russian).


Review

For citations:


Sizov V.P., Pogorelov V.N., Vakhtin Yu.V. Two-Axis Solid-State Microgyroscope on Surface Acoustic Waves. Mekhatronika, Avtomatizatsiya, Upravlenie. 2019;20(5):299-307. (In Russ.) https://doi.org/10.17587/mau.20.299-307

Views: 663


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)