Control of Regenerative Self-Excited Vibrations in the Milling Process
https://doi.org/10.17587/mau.20.291-298
Abstract
The problem of the occurrence and rapid suppression of vibrations arising in the process of milling using robot arm is considered. It is assumed that the tool (cutter) is connected with the robot by an elastic suspension, which is used for the force sensation of the robot. Based on the mathematical model of regenerative self-excited vibrations (chattering), the simulation of the system "robot-tool-work surface" was carried out. The tool moves evenly along the work surface with a given pressure on it. The cutter is pressed using the position-force control algorithm based on two PID-controllers with coordinate and force feedbacks. It provides the necessary axial depth of cut. Uniform movement along the work surface is carried out using the velocity control algorithm based on PID-controller with velocity feedback. It provides the required tool feed. Several authors have experimentally and analytically shown that in the process of milling "on the track" unstable regenerative self-oscillations can occur. Track remains on the machined surface during the previous cutter tooth pass. Chattering is a deterrent to increase productivity which mainly depends on rotation speed of cutter and the axial depth of cut. In this paper we consider the possibility of promptly detecting the onset of unstable auto-oscillations from the amplitude spectrum of the sensor readings of the horizontal forces of interaction between the instrument and the work surface. The amplitude spectrum is obtained using the fast Fourier transform, which allows to promptly determine the beginning of unstable processes in system. The subsequent decrease of the axial depth of cut (within one to two percent) almost completely stabilizes the cutting process. This paper proposes a variant of adaptation contour for the robot vertical movement control system based on the allowable change of the axial depth of cut.
About the Authors
O. B. ShagnievRussian Federation
Corresponding author: Shagniev Oleg B., Ph. D. Student
St. Petersburg
I. K. Shanshin
Russian Federation
St. Petersburg
S. F. Burdakov
Russian Federation
St. Petersburg
References
1. Panov A. A., Anikin V. V., Boym M. G. i dr. Obrabotka metallov rezaniyem. Spravochnik tekhnologa (Metal cutting. Technology handbook), Moscow, Mashinostroyeniye, 2004, 784 p. (in Russian).
2. Available at: https://www.youtube.com/watch?v=VJqvMY5cTl0
3. Available at: https://www.youtube.com/watch?v=iBfPC88xaJo
4. Kudinov V. A. Dinamika stankov (Machine tools dynamics), Moscow, Mashinostroyeniye. 1967. 359 p. (in Russian).
5. Kedrov S. S. Kolebaniya metallorezhushchikh stankov (Machine tools vibrations), Moscow, Mashinostroyeniye, 1978, 200 p. (in Russian).
6. Murashkin L. S., Murashkin S. L. Prikladnaya nelineynaya mekhanika stankov (Applied nonlinear dynamics of machine tools), Leningrad, Mashinostroyeniye. 1977, 192 p. (in Russian).
7. Tobias S. A., Fishwick W. The chatter of lathe tools under orthogonal cutting conditions, Transactions of ASME, 1958, vol. 80, iss. 1, pp. 1079—1088.
8. Tlusty J., Polacek M. The stability of the machine tools against self-excited vibrations in machining, International Research in Production Engineering, 1963, vol. 1, iss. 1, pp. 465—474.
9. Tobias S. A. Machine tool vibration, New York, Wiley, 1961, 352 p.
10. Voronov S. A., Nepochatov A. V., Kiselev I. A. Kriterii otsenki ustoychivosti protsessa frezerovaniya nezhestkikh detaley (Criteria for assessing the stability of the milling process of non-rigid parts), Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroyeniye, 2011, iss. 1, pp. 50—62 (in Russian).
11. Altintas Y. Metal cutting mechanics, machine tool vibrations, and CNC design, Cambridge University press, 2012, 382 p.
12. Altintas Y., Stepan G., Merdol D., Dombovari Z. Chatter stability of milling in frequency and discrete time domain, CIRP Journal of Manufacturing Science and Technology, 2008, iss. 1, pp. 35—44.
13. Budak E. Maximizing Chatter Free Material Removal Rate in Milling through Optimal Selection of Axial and Radial Depth of Cut Pairs, CIRP Annals — Manufacturing Technology, 2005, vol. 54, iss. 1, pp. 353—356.
14. Svinin V. M. Issledovaniye kinematicheskikh i dinamicheskikh kharakteristik golovki dlya modulyatsii skorosti rezaniya i vybor yeye konstruktivnykh parametrov (Investigation of the kinematic and dynamic characteristics of the head for cutting speed modulation and the choice of its design parameters), Uchenyye zapiski Zabaykalskogo gosudarstvennogo universiteta. Fizika, matematika, tekhnika, tekhnologiya, 2010, pp. 85—97 (in Russian).
15. Ivanov I. I., Voronov S. A., Nikolayev S. M., Kuts V. A. Modelirovaniye vibratsiy pri ploskom frezerovanii s korrektsiyey chastoty vrashcheniya v rezhime realnogo vremeni (Vibration simulation during face milling with real-time rotation speed correction), Nauka i Obrazovaniye MGTU im. N. E. Baumana. Elektron. Zhurn., 2017, iss. 3, pp. 1—16 (in Russian).
16. van Dijk N., van de Wouw N., Doppenberg E., Oosterling H., Nijmeijer H. Chatter control in the high-speed milling process using -synthesis, American Control Conference (ACC), 2010, pp. 6121—6126.
17. van Dijk N., van de Wouw N., Doppenberg E., Oosterling H., Nijmeijer H. Robust active chatter control in the highspeed milling process, IEEE Transactions on Control Systems Technology, 2012, vol. 20, iss. 4, pp. 901—917.
18. Yurevich Ye. I. Sensornyye sistemy v robototekhnike (Sensor systems in robotics), SPb., Publishing house of Politekhn. un-ta, 2013, 100 p. (in Russian).
19. Gorinevskiy D. M., Formalskiy A. M., Shneyder A. Yu. Upravleniye manipulyatsionnymi sistemami na osnove informatsii ob usiliyakh, Pod red. V. S. Gurfinkelya i Ye.A. Devyanina, Moscow, Fizmatlit, 1994, 368 p. (in Russian).
20. Yegorov I. N. Pozitsionno-silovoye upravleniye robototekhnicheskimi i mekhatronnymi ustroystvami (Position-force control of robotic and mechatronic devices), Vladimir, Publishing house of Vladimir. Gos. Un-ta. 2010, 192 p. (in Russian).
21. Baydina T. A., Shagniyev O. B., Burdakov S. F. Upravleniye vibratsionnym sostoyaniyem robota pri silovom vzaimodeystvii s sherokhovatoy poverkhnostyu neopredelennogo profilya (Control of vibrational state of a robot interacting with a rough free-formed surface), Nauchno-tekhnicheskiye vedomosti SPbGPU. Informatika. Telekommunikatsii. Upravleniye, 2016, iss. 4. pp. 43—52 (in Russian).
22. Burdakov S. F., Shagniyev O. B. Modeli mekhaniki v zadache upravleniya silovym vzaimodeystviyem robota s poverkhnostyu neopredelennogo profilya (Mechanics models in the control problem of the force interaction between a robot and a free-formed surface), Nauchno-tekhnicheskiye vedomosti SPbGPU. Informatika. Telekommunikatsii. Upravleniye, 2015, iss. 4, pp. 68—79 (in Russian).
23. Yurevich Ye. I., Kalyayev I. A., Lokhin V. M., Makarov I. M. Intellektualnyye roboty: uchebnoye posobiye dlya vuzov (Intelligent robots: textbook for universities), Moscow, Mashinostroyeniye, 2007, 360 p. (in Russian).
Review
For citations:
Shagniev O.B., Shanshin I.K., Burdakov S.F. Control of Regenerative Self-Excited Vibrations in the Milling Process. Mekhatronika, Avtomatizatsiya, Upravlenie. 2019;20(5):291-298. (In Russ.) https://doi.org/10.17587/mau.20.291-298