Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Modelling of Demining Manipulator Optimal Functioning

https://doi.org/10.17587/mau.20.280-290

Abstract

The paper describes the modelling of a demining manipulator that contains a pneumatic drive, an infrared mine detector and a mine neutralizator. The infrared mine detector identifies the mine position in the scanning mode of the manipulator and gives a control signal to an input of a manipulator drive control unit for accurate positioning of the neutralizator above the detected mine. A problem of the optimal manipulator positioning in the sense of the control energy consumption minimization is solved. The feedback loop contains only one sensor to perform the optimal positioning of the third-order control object due to an observer application. Modelling results of the infrared detector mine searching and of the neutralizator positioning by means of a pneumatic manipulator are presented. A comparison of modelling and experimental results shows that modelling assumptions correspond enough to real process parameters.

About the Author

M. Yu. Rachkov
Moscow Politech
Russian Federation

Corresponding author: Rachkov Mikhail Yu., D. Sc., Prof., Moscow Politech

Moscow, 107023



References

1. Landmine Monitor 2015, International Campaign to Ban Landmines — Cluster Munition Coalition (ICBL-CMC), 2015.

2. de Almeida A. T., Khatib O. K. Autonomous Robotics Systems, Springer, 1998.

3. Mikulic D. Design of demining machines, Springer, 2013.

4. de Santos P. G., Cobano J. A., Garcia E., Estremera J., Armada M. A six-legged robot-based system for humanitarian demining missions, Mechatronics, 2007, vol. 17, no. 8, pp. 417—430.

5. Santana P. F., Barata J., Correia L. Sustainable robots for humanitarian demining, International Journal of Advanced Robotic Systems, 2007, vol. 4, no. 2, pp. 207—218.

6. Rachkov M., Marques L., de Almeida A. T. Automation of Demining, University Press, University of Coimbra, 2002.

7. Rachkov M. Yu., Crisóstomo M., Marques L., de Almeida A. T. Positional control of pneumatic manipulators for construction tasks, Automation in Construction, Elsevier Science, 2002, 11 (6), pp. 655—665.

8. Yinon J. Forensic and environmental detection of explosives, Wiley, 1999.

9. Noro D., Sousa N., Marques L., de Almeida A. T. Active Detection of Antipersonnel Landmines by Infrared, Annals of Electrotechnical Engineering Technology, Portuguese Engineering Society, 1999.

10. Pozar D. M. Microwave Engineering, Second Edition, John Wiley & Sons, 1998.

11. Griffiths J. Radio Wave Propagation and Antenas: an introduction, Prentice-Hall, 1987.

12. Bengtsson N. E., Ohlsson T. Microwave Heating in the Food Industry, Proc. of the IEEE, 1974, vol. 62, no. 1.

13. Metaxas A. C. Foundations of Electroheat — a unified approach, John Wiley & Sons, 1996.

14. MATLAB, High-Performance Numeric Computation and Visualization Software, The Math Works, Inc., 2016.

15. Hipp J. E. Soil Electromagnetic Parameters as Functions of Frequency, Soil Density, and Soil Moisture, Proc. of the IEEE, 1974, vol. 62, no. 1.

16. Hallikainen M. T. et al. Microwave Dielectric Behavior of Wet Soil — Part I: Empirical Models and Experimental Observations, IEEE Transactions on Geoscience and Remote Sensing, 1985, vol. GE-23, no. 1.

17. Luenberger D. Observers for multivariable systems, IEEE Trans. on Automatic Control, AC-11, 1966.

18. Brammer K., Ziffling G. Kalman-Bucy filter, Nauka, Moscow, 1982 (in Russian).

19. Reutenberg Ya. N. Automatic control, Nauka, Moscow, 1978 (in Russian).


Review

For citations:


Rachkov M.Yu. Modelling of Demining Manipulator Optimal Functioning. Mekhatronika, Avtomatizatsiya, Upravlenie. 2019;20(5):280-290. https://doi.org/10.17587/mau.20.280-290

Views: 642


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)