Synthesis of the Missile Homing System Taking into Account the Dynamic Characteristic of the Measurement Elements
https://doi.org/10.17587/mau.20.251-256
Abstract
Several various missile homing systems (MHS) have been developed in recent years. However, to the best of our knowledge, these systems do not take into account the dynamic characteristics of the measurement elements (ME). Such existing systems can only work well when the MEs have a small inertia and large damping. Thus in general case, it is necessary to consider the dynamic characteristics of the MEs with the big inertia. In addition, using the MEs with the big inertia, the MHSs is able to remove the high-frequency noise. However, taking into account the dynamic properties of the MEs causes difficulties in determining the transfer function (PF) of the normal acceleration stability system and the synthesis of MHSs. Therefore, in this paper, we propose an effective mathematical model of the missile homing system, which takes into consideration the dynamic characteristics of the MEs. In addition, this model allows synthesizing the high accuracy MHSs, and utilizing the MEs with the inertia equivalent to the inertia of the rudder actuator. To accomplish that, the proposed system is composed of two stages. In the first stage, the MHSs, which do not incorporate the dynamic characteristics of the MEs, is presented in detail. Then, we analyze and estimate the effect of the dynamic characteristics of the MEs on the performance of the MHSs. In the second stage, we propose a novel MHS, which takes into account the dynamic characteristics of the MEs. The proposed system is implemented based on the basic functions in the Control system toolbox in MATLAB, and designed by the parametric optimization method. The simulation results indicate that, our proposed system outperforms the conventional MHSs in term of reducing the negative effects of the dynamic characteristic of the MEs on the quality of the MHS.
About the Author
. Do Quang ThongViet Nam
Corresponding author: Do Quang Thong, Le Quy Don Technical University, 236 Hoang Quoc Viet, Ha Noi city, Viet Nam
References
1. Krineckij E. I. Sistemy samonavedenija (Homing systems), Moscow, Mashinostroenie, 1970, pp. 148—149 (in Russian).
2. Fedosov E. A., Bobronnikov V. T., Krasil’shhikov N. N. et al. Dinamicheskoe proektirovanie sistem upravlenija avtomaticheskih manevrennyh letatel’nyh apparatov (Dynamic design of automatic maneuverable aircraft control systems), Moscow, Mashinostroenie, 1997, pp. 87—88 (in Russian).
3. Pupkov K. A., Egupov N. D., Kolesnikov L. V. et al. Vysokotochnye sistemy samonavedenija: raschet i proektirovanie. Vychislitel’nyj jekspereiment (High-precision homing systems: calculation and design. Computational experiment), Moscow, FIZMATLIT, 2011, pp. 30—64, 297—300 (in Russian).
4. Timofeev N. N., Shestun A. N. Proektirovanie nestacionarnyh dinamicheskih sistem upravlenija letatel’nyh apparatov (Design of non-stationary dynamic control systems of aircraft), SPb., Publishing house of BGTU, 2001, pp. 9—43 (in Russian).
5. Blakelock J. H. Automatic Control of Aircraft and Missiles, John Wiley & Sons, Inc., New York, NY, second edition, 1991, pp. 77—80, 238—244, 287.
6. Roskam J. Airplane Flight Dynamics and Automatic Flight Control, Part I, Roskam Aviation and Engineering Corporation, Ottawa, Kansas, second printing, 1998, 689 p.
7. Zarchan P. Tactical and Strategic Missile Guidance, third edition, Vol. 157, Progress in Astronautics and Aeronautics, published by the American Institute of Aeronautics and Astronautics, Inc., Washington, D. C., 1998, pp. 508—518, 529—549.
8. Tolpegin O. A. Matematicheskie modeli sistem navedenija letatel’nyh apparatov (Mathematical models of aircraft guidance systems), SPb., BGTU, 1999, pp. 65—96 (in Russian).
9. Sannikov V. A., Shalygin A. S. Matematicheskie modeli stabilizacii dvizhenija letatel’nyh apparatov (Mathematical models of the stabilization of the movement of aircraft), SPb, Leningradskij ordena Lenina Krasnogo Znameni Mehanicheskogo institut imeni Marshala Sovetskogo Sojuza D. F. Ustinova, 1989, pp. 4—56 (in Russian).
10. Makar’ev B. M., Andrievskij B. R. Sistemy stabilizacii letatel’nyh apparatov. Principy postroenija i struktura sistemy stabilizacii (Aircraft stabilization systems. Principles of construction and structure of the stabilization system), SPb, Leningradskij ordena Lenina Krasnogo Znameni Mehanicheskogo institut imeni Marshala Sovetskogo Sojuza D. F. Ustinova, 1981, pp. 4—117 (in Russian).
11. Lebedev A. A., Karabanov V. A. Dinamika sistem upravlenija bespilotnymi letatel’nymi apparatami (Dynamics of control systems for unmanned aerial vehicles), Moscow, Mashinostroenie, 1965, pp. 410—442 (in Russian).
12. Lebedev A. A., Chernobrovkin L. S. Dinamika poljota bespilotnyh letatel’nyh apparatov (Flight dynamics of unmanned aerial vehicles), Moscow, Mashinostroenie, 1962, pp. 394—479 (in Russian).
13. Kutovzov N. T. Sistemy stabilizacii letatel’nyh apparatov (Aircraft Stabilization Systems), Moscow, Vyssh. Shkola, 1976, pp. 270—282 (in Russian).
14. Golubev I. S., Svetlov V. G. Proektirovanie zenitnyh upravljaemyh raket (Design of anti-aircraft guided missiles), Moscow, Publishing house of MAI, 1999, pp. 380—420 (in Russian).
15. Kazakov I. E., Mishakov A. F. Aviacionnye upravljaemye rakety, Part II, Sistemy upravlenija i dinamika navedenija aviacionnyh upravljaemyh raket i bomb (Aviation guided missiles, Part II — Control systems and targeting dynamics of aviation guided missiles and bombs), Moscow, Publishing house of VVIA im. Zhukovskogo N. E., 1985, pp. 203—255 (in Russian).
16. Bodner V. A. Sistemy upravlenija letatel’nymi apparatami (Aircraft control systems), Moscow, Mashinostroenije, 1973, pp. 195—236 (in Russian).
17. Metvedev V. S., Pochjomkin V. G. Control System Toolbox, Moscow, Publishing house of DIALOG MIFI, 1999 (in Russian).
Review
For citations:
Do Quang Thong Synthesis of the Missile Homing System Taking into Account the Dynamic Characteristic of the Measurement Elements. Mekhatronika, Avtomatizatsiya, Upravlenie. 2019;20(4):251-256. (In Russ.) https://doi.org/10.17587/mau.20.251-256