Structural Identifiability of Nonlinear Dynamic Systems
https://doi.org/10.17587/mau.20.195-205
Abstract
Approach to the analysis of nonlinear dynamic systems structural identifiability (SI) under uncertainty is proposed. This approach has difference from methods applied to SI estimation of dynamic systems in the parametrical space. Structural identifiability is interpreted as of the structural identification possibility a system nonlinear part. We show that the input should synchronize the system for the SI problem solution. The S-synchronizability concept of a system is introduced. An unsynchronized input gives an insignificant framework which does not guarantee the structural identification problem solution. It results in structural not identifiability of a system. The subset of the synchronizing inputs on which systems are indiscernible is selected. The structural identifiability estimation method is based on the analysis of framework special class. The structural identifiability estimation method is proposed for systems with symmetric nonlinearities. The input parameter effect is studied on the possibility of the system SI estimation. It is showed that requirements of an excitation constancy to an input in adaptive systems and SI systems differ.
About the Author
N. N. KarabutovRussian Federation
DTS, Professor
Corresponding author: Karabutov Nikolay N., MIREA — Russian Technological University 119454 Moscow, Russian Federation
References
1. Kalman R. E. On the general theory of control systems. Proceeding first IFAC Congress on Automatic Control. Moscow, 1960; Butterworths, London. 1961. Vol. 1. P. 481—492 (in Russian).
2. Lee R. С. K. Optimal estimation, identification, and control. Cambridge, Mass: MIT Press, 1964. 340 p.
3. Elgerd O. I. Control Systems Theory. N. Y.: McGraw-Hill, 1967. 660 p.
4. Walter E. Identifiability of state space models. Berlin Germany: Springer-Verlag, 1982. 216 p.
5. Audoly S., D’Angio L., Saccomany M. P., Cobelli C. Global identifiability of linear compartmental models a computer algebra algorithm. IEEE Trans. Automat. Contr.,1998, vol. 45, pp. 36—47.
6. Avdeenko T. V. Identificatsiya lineynih dinamicheskih system s ispolsovaniem contsepcii separatorov parametpichskogo prostranstva (Identification of linear dynamic systems with use parametrical space separators). Automatics and program engineering, 2013, no. 1(3), p. 16—23 (in Russian).
7. Bodunov N. A. Vvedenie v teoriu lokalnoi parametpichskoi identificiruemosti (Introduction to the theory of local parametrical identifiability). Differential equations and management processes, 2012, no. 2, 137 p. (in Russian).
8. Balonin N. A. Teoriya identificiruemosti (Theorems of identifiability). St. Petersburg: Politekhnika publishing house, 2010, 48 p. (in Russian).
9. Spravochnik po teorii avtomaticheskogo upravleniya (Reference book on automatic control theory). Ed. A. A. Krasovsky. Moscow: Nauka, 1987, 712 p. (in Russian).
10. Stigter J. D., Peeters R. L.M. On a geometric approach to the structural identifiability problem and its application in a water quality case study // Proceedings of the European Control Conference 2007 Kos, Greece, July 2-5, 2007. P. 3450—3456.
11. Chis O.-T., Banga J. R., Balsa-Canto E. Structural identifiability of systems biology models: a critical comparison of methods, PLOS ONE, 2011, vol. 6, is. 4, pp. 1—16.
12. Saccomani M. P., Thomaseth K. Structural vs practical identifiability of nonlinear differential equation models in systems biology. Bringing mathematics to life, in Dynamics of mathematical models in biology, Ed. A. Rogato, V. Zazzu, M. Guarracino. Springer. 2010, pp. 31—42.
13. Aivazyan S. A., Yenyukov I. S., Meshalkin L. D. Prikladnaya statistika (Applied statistics. Study of relationships). Moscow: Finansy i statistika, 1985 (in Russian).
14. Karabutov N. Structural identification of dynamic systems with hysteresis. International journal of intelligent systems and applications, 2016, vol. 8, no. 7, pp. 1—13.
15. Karabutov N. N. Structural methods of design identification systems. Nonlinearity problems, solutions and applications. Volume 1. Ed. L. A. Uvarova, A. B. Nadykto, A. V. Latyshev. New York: Nova Science Publishers, Inc, 2017. pp. 233—274.
16. Kazakov Y. E., Dostupov B. G. Statisticheskaya dinamika nelineinich avtomaticheskich system (Statistical dynamics of nonlinear automatic systems). Moscow: Fizmatgis, 1962, 278 p. (in Russian).
17. Furasov V. D. Ustoichovost dvizeniya ozenki i stabilizaciya (Stability of motion, estimation and stabilization). Moscow: Nauka, 1977, 248 p. (in Russian).
18. Karabutov N. Structural identification of nonlinear dynamic systems. International journal of intelligent systems and applications, 2015, vol. 7, no. 9, pp. 1—11.
19. Choquet G. L’enseignement de la geometrie. Paris: Hermann, 173 p., 1964.
20. Bozhokin S. V., Parshin D. A. Fraktali i multifraktali (Fractals and Multifractals). Moscow-Izhevsk: Scientific Publishing Centre \"Regular and Chaotic Dynamics\", 2001, 128 p. (in Russian).
Review
For citations:
Karabutov N.N. Structural Identifiability of Nonlinear Dynamic Systems. Mekhatronika, Avtomatizatsiya, Upravlenie. 2019;20(4):195-205. (In Russ.) https://doi.org/10.17587/mau.20.195-205