Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

The Use of Joints Force Sensors to Determine the Collision Location and Type for an Industrial Robot

https://doi.org/10.17587/mau.20.171-179

Abstract

Recent  advances  in the development  of sensors allowed to obtain robots with torque-sensitive sensors in each joint. At the moment,  these sensors are used only to detect collision. This work shows the possibility of obtaining information  on the collision point and  it type. This  information  can subsequently  be used to select the robot’s behavior  strategy. The  contact point localization  is realized  using two approaches: the analytical  approach and  machine  learning. Analytical  approach is based on finding point on the robot length and  direction of applied external  force where an equivalent  torques will be the same as torques in a real robot. In the machine  learning approach various learning technics were tested. For the collision type identification  a classification  tree was proposed that  distinguish  soft and  hard  collision,  purposeful  and  accidental, single and continuous.  The  algorithm at the first stage detects presence of a collision, and if there is a collision localizes it and identify  its type. The  described algorithms were tested on an industrial  manipulator  Kuka  iiwa LBR  14 R820, ground truth information  about the experiments  was obtained  using a 3D lidar.

About the Authors

D. I. Popov
Innopolis University
Russian Federation

Popov D. I. - M.  Sc., Junior researcher, Robotics Development Center.

Innopolis, 420500.



A. S. Klimchik
Innopolis University
Russian Federation
Innopolis, 420500.


References

1. De Santis A. et al. An atlas of physical human—robot interaction, Mechanism and Machine Theory, 2008, vol. 43, no. 3, pp. 253—270.

2. Wang X. et al. Robot manipulator self-identification for surrounding obstacle detection, Multimedia Tools and Applications, 2016, pp. 1—26.

3. Morikawa S. et al. Realtime collision avoidance using a robot manipulator with light-weight small high-speed vision systems, Robotics and Automation, 2007, pp. 794—799.

4. Part S. I. Impedance control: A n approach to manipulation, Journal of dynamic systems, measurement, and control, 1985, vol. 107, pp. 17.

5. Ebert D. M., Henrich D. D. Safe human-robot-cooperation: Image-based collision detection for industrial robots, Intelligent Robots and Systems, 2002, vol. 2, pp. 1826—1831.

6. Magrini E., Flacco F., De Luca A. Control of generalized contact motion and force in physical human-robot interaction, Robotics and Automation (ICR A), 2015, pp. 2298—2304.

7. Cannata G. et al. An embedded artificial skin for humanoid robots, Multisensor Fusion and Integration for Intelligent Systems, 2008, pp. 434-438.

8. Fritzsche M., Elkmann N., Schulenburg E. Tactile sensing: A key technology for safe physical human robot interaction, Proceedings of the 6th international conference on Human-robot interaction, ACM, 2011, pp. 139—140.

9. Fritzsche M., Saenz J., Penzlin F. A large scale tactile sensor for safe mobile robot manipulation, The Eleventh ACM/ IEEE International Conference on Human Robot Interaction, IEEE Press, 2016, pp. 427—428.

10. McMahan W., Romano J. M., Kuchenbecker K. J. Using accelerometers to localize tactile contact events on a robot arm, Proc. Workshop on Advances in Tactile Sensing and Touch-Based Human-Robot Interaction, 2012.

11. Petrovskaya A., Park J., Khatib O. Probabilistic estimation of whole body contacts for multi-contact robot control, Robotics and Automation, 2007, pp. 568—573.

12. Magrini E., Flacco F., De Luca A. Estimation of contact forces using a virtual force sensor, Intelligent Robots and Systems, 2014, pp. 2126—2133.

13. Dimeas F., Avendano-Valencia L. D., Aspragathos N. Human-robot collision detection and identification based on fuzzy and time series modelling, Robotica, 2015, vol. 33, no. 09, pp. 1886—1898.

14. Hur S., Oh S. R., Oh Y. Joint space torque controller based on time-delay control with collision detection, Intelligent Robots and Systems (IROS 2014), pp. 4710—4715.

15. Zelenak A., Pryor M., Schroeder K. An Extended Kalman Filter for Collision Detection During Manipulator Contact Tasks, ASME 2014 Dynamic Systems and Control Conference, American Society of Mechanical Engineers, 2014, pp. V001T11A005-V001T11A005.

16. Lee S. D., Kim M. C., Song J. B. Sensorless collision detection for safe human-robot collaboration, Intelligent Robots and Systems, 2015, pp. 2392—2397.

17. Geravand M., Flacco F., De Luca A. Human-robot physical interaction and collaboration using an industrial robot with a closed control architecture, Robotics and Automation (ICR A), IEEE, 2013, pp. 4000—4007.

18. De Luca A., Mattone R. Sensorless robot collision detection and hybrid force/motion control, Robotics and Automation, 2005, pp. 999—1004.

19. De Luca A. et al. Collision detection and safe reaction with the DLR-III lightweight manipulator arm, Intelligent Robots and Systems, 2006, pp. 1623—1630.

20. Haddadin S. et al. Collision detection and reaction: A contribution to safe physical human-robot interaction, Intelligent Robots and Systems, 2008, pp. 3356—3363.

21. Hennersperger C. et al. Towards MRI-based autonomous robotic US acquisitions: a first feasibility study, IEEE transactions on medical imaging, 2017, vol. 36, no. 2, pp. 538—548.

22. Likar N., Žlajpah L. External joint torque-based estimation of contact information, International Journal of Advanced Robotic Systems, 2014, vol. 11, no. 7, pp. 107.

23. Finkel D. E. DIRECT optimization algorithm user guide, Center for Research in Scientific Computation, North Carolina State University, 2003, vol. 2.


Review

For citations:


Popov D.I., Klimchik A.S. The Use of Joints Force Sensors to Determine the Collision Location and Type for an Industrial Robot. Mekhatronika, Avtomatizatsiya, Upravlenie. 2019;20(3):171-179. (In Russ.) https://doi.org/10.17587/mau.20.171-179

Views: 744


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)