Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Architecture of a Hydroacoustic Navigation System with a Cotton Basis for Conversion of the Underwater Apparatus to the Docking Module

https://doi.org/10.17587/mau.20.152-161

Abstract

The  object of the study are the principles and methods  of hydroacoustic  reduction  of an autonomous  underwater  vehicle to a carrier. When solving the problem of constructing a hydroacoustic  navigation  system (HNS), the main  systemic issues are the choice of an acceptable method for locating an object in the reduction zone and estimating the options of the proposed navigation system from the point of view of technical implementation. The  feasibility of constructing the equipment  of a highfrequency hydroacoustic  reduction system in the form of a combined  information  and navigation antenna  system combined  in base, in which hydroacoustic  navigation systems with a short base can be used, is justified; as navigation it is suggested to use data signals exchanged  between the docking module  and the autonomous  underwater  vehicle based on the results of measuring the mutual  navigation  options. The  developed  sample of equipment  is part of a multifunctional network  of hydroacoustic communication and should ensure that in a near zone at distances not exceeding 300 m, an autonomous  underwater  vehicle is brought into contact  with the carrier. For this purpose, mutual  determination  of the distance  and  angular  position of the docking module  of the carrier and the autonomous  underwater  vehicle relative to each other is carried out. Determination  of the distance and angular position of the docking module of the carrier and the autonomous  underwater vehicle relative to each other is accompanied  by the transfer of data  between  them  along the hydroacoustic  communication channel.  The  proposed sample of high-frequency hydroacoustic  reduction system (HHRS) equipment  of short-range action is intended  for operation as part of a complex of technical  means  providing underwater  docking of an autonomous  underwater  vehicle with a carrier. The  obtained  quantitative  options of short-based  HNS are the  initial  indicators  of the  first approximation  when  selecting the necessary parameters of the navigation  signal and developing the structure of the AGSS  designed to solve the problem of automatically bringing the autonomous  underwater  vehicle (AU V ) to the docking module  (DM)  of the given carrier.

About the Author

B. I. Filippov
Novosibirsk State Technical University
Russian Federation

Filippov Boris I. - C. S. T., Associate  Professor.

Novosibirsk, 630087.



References

1. Ageev M. D., Kasatkin B. A., Kiselev L. V. et al. Avtomaticheskie podvodnye apparaty (Automatic underwater vehicles), Leningrad, Shipbuilding, 1981, 224 p. (in Russian).

2. Filaretov V. F., Yukhimets D. A. Sposob formirovanija programmnogo upravlenija skorostnym rezhimom dvizhenija podvodnogo apparata po proizvol’nym prostranstvennym traektorijam s zadannoj dinamicheskoj tochnost’ju (Method of software formation by the high-speed regime of underwater vehicle motion along an arbitrary spatial trajectory with a given dynamic accuracy), Izvestiya R A N. Theory and control systems, 2011, no. 4, pp. 167—170 (in Russian).

3. Kiselev L. V. Organizacija prostranstvennogo dvizhenija avtonomnogo podvodnogo apparata pri traektornom obsledovanii ob#ektov, oblastej fizicheskih polej (Organization of the spatial use of an autonomous underwater vehicle in the trajectory survey of objects, areas of physical fields), The thesis abstract for the degree of Doctor of Science, special. 05.13.01, 1997 (in Russian).

4. Filaretov V. F., Lebedev A. V., Yukhmanets D. A. Ustrojstva i sistemy upravlenija podvodnyh robotov (Devices and control systems for underwater robots), Moscow, Nauka, 2005, 213 p. (in Russian).

5. Kabanov D. S. Sintez algoritma optimal’nogo programmno-pozicionnogo upravlenija mnogorezhimnym avtomaticheskim podvodnym apparatom (Synthesis of the algorithm of optimal programpositional control of a multimode automatic submersible vehicle), Mekhatronika, Avtomatizatsiya, Upravlenie, 2014, no. 1, pp. 60—66 (in Russian).

6. Bobkov V. A. Navigacija podvodnogo robota po stereoizobrazhenijam (Navigation underwater robot on stereo images), Mekhatronika, Avtomatizatsiya, Upravlenie, 2016, vol. 17, no. 2, pp. 101—109 (in Russian).

7. Henriksen L. Detection of an underwater object based on an electrically scanned high-resolution sonar, In the materials of a symposium on autonomous technology of underwater transport, 1994, pp. 99—104.

8. Filaretov V. F., Yukhimets D. A., Mursalimov E. Sh., Toufanov I. E. Novyj metod konturnogo upravlenija dvizheniem ANPA (New method of contour control by ANPA movement), Mekhatronika, Avtomatizatsiya, Upravlenie, 2014, no. 8. pp. 46—56 (in Russian).

9. Kushnerik A. A., Mikhaylov D. N., Sergienko N. S., Shcherbatyuk A. F., Goy V. A., Toufanov I. E., Dubrovin F. S. Morskoj robototehnicheskij kompleks, vkljuchajushhij avtonomnye neobitaemye podvodnyj i vodnyj apparaty (The marine robot-technical complex, including autonomous uninhabited underwater and water vehicles), Mekhatronika, Avtomatizatsiya, Upravlenie, 2014б no. 3, pp. 67—72 (in Russian).

10. Louis DePascua. The system and method of sonar, US Patent no. 8879359. Publication Date 4.11. 2014.

11. Filippov B. I., Chernetsky G. A. Vybor ansamblja signalov dlja peredachi komand upravlenija v gidroakusticheskih kanalah svjazi (Selection of the ensemble of signals for command transmission in hydroacoustic communication channels), Izvestiya Volg-GTU, series Electronics, measuring equipment, radio engineering and communications, 2015, vol. 11, no. 3 (161), pp. 69—72 (in Russian).

12. Filippov B. I. Protokol obmena signalami v seti gidroakusticheskih donnyh avtonomnyh stancij (Protocol for the exchange of signals in a network of hydroacoustic bottom autonomous stations), Izvestiya VolgGTU, a series of electronics, measuring equipment, radio engineering and communications, 2015, vol. 12, no. 11 (176), pp. 104—111 (in Russian).

13. Filippov B. I. Opredelenie naklonnoj dal’nosti mezhdu sudnom i donnoj stanciej (Determination of the inclined distance between the court and the bottom station), Vestnik RGRTU, 2016, no. 55, pp. 33—40 (in Russian).

14. Filippov B. I. Peredacha telemetricheskoj informacii po gidroakusticheskomu kanalu svjazi (Transmission of telemetric information on the hydroacoustic communication channel), Informatsionnye tekhnologii, 2017, vol. 23, no. 9, pp. 658—663 (in Russian).

15. Filippov B. I. Algoritm funkcionirovanija sistemy izmerenija distancii s ispol’zovaniem gidroakusticheskogo kanala svjazi (A lgorithm for the functioning of a distance system using a hydroacoustic communication channel), Vestnik ASTU, Series Management, Computer Engineering and Informatics, 2016, no. 4, pp. 87—98 (in Russian).

16. Filippov B. I., Chernetsky G. A. Principy apparaturnoj realizacii sistemy izmerenija dal’nosti v gidroakusticheskih kanalah (Principles of hardware implementation of distance measuring systems in hydroacoustic channels), Radio engineering, 2017, no. 3, pp. 40—49 (in Russian).

17. Filippov B. I. Jenergeticheskij raschjot gidroakusticheskih linij svjazi (Energy calculation of hydroacoustic communication lines), Bulletin of the Astrakhan State Technical University. Series Management, Computer Science and Informatics, 2016, no. 3, pp. 81—91 (in Russian).

18. Pissmenny D. T. Lekcii po vysshej matematike (Lectures on higher mathematics: 2nd ed.), Moscow, Iris press, 2002, 288 p. (in Russian).

19. Korn G., Korn T. Spravochnik po matematike dlja nauchnyh rabotnikov i inzhenerov (Handbook of Mathematics for Scientists and Engineers), Moscow, Science, 1974, 832 p. (in Russian).

20. Mirsky G. Ya. Jelektronnye izmerenija (Electronic measurements), Recyc. and additional, Moscow, Radio and communication, 1986, 440 p. (in Russian).


Review

For citations:


Filippov B.I. Architecture of a Hydroacoustic Navigation System with a Cotton Basis for Conversion of the Underwater Apparatus to the Docking Module. Mekhatronika, Avtomatizatsiya, Upravlenie. 2019;20(3):152-161. (In Russ.) https://doi.org/10.17587/mau.20.152-161

Views: 673


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)