Architecture of a Hydroacoustic Navigation System with a Cotton Basis for Conversion of the Underwater Apparatus to the Docking Module
https://doi.org/10.17587/mau.20.152-161
Abstract
The object of the study are the principles and methods of hydroacoustic reduction of an autonomous underwater vehicle to a carrier. When solving the problem of constructing a hydroacoustic navigation system (HNS), the main systemic issues are the choice of an acceptable method for locating an object in the reduction zone and estimating the options of the proposed navigation system from the point of view of technical implementation. The feasibility of constructing the equipment of a highfrequency hydroacoustic reduction system in the form of a combined information and navigation antenna system combined in base, in which hydroacoustic navigation systems with a short base can be used, is justified; as navigation it is suggested to use data signals exchanged between the docking module and the autonomous underwater vehicle based on the results of measuring the mutual navigation options. The developed sample of equipment is part of a multifunctional network of hydroacoustic communication and should ensure that in a near zone at distances not exceeding 300 m, an autonomous underwater vehicle is brought into contact with the carrier. For this purpose, mutual determination of the distance and angular position of the docking module of the carrier and the autonomous underwater vehicle relative to each other is carried out. Determination of the distance and angular position of the docking module of the carrier and the autonomous underwater vehicle relative to each other is accompanied by the transfer of data between them along the hydroacoustic communication channel. The proposed sample of high-frequency hydroacoustic reduction system (HHRS) equipment of short-range action is intended for operation as part of a complex of technical means providing underwater docking of an autonomous underwater vehicle with a carrier. The obtained quantitative options of short-based HNS are the initial indicators of the first approximation when selecting the necessary parameters of the navigation signal and developing the structure of the AGSS designed to solve the problem of automatically bringing the autonomous underwater vehicle (AU V ) to the docking module (DM) of the given carrier.
About the Author
B. I. FilippovRussian Federation
Filippov Boris I. - C. S. T., Associate Professor.
Novosibirsk, 630087.
References
1. Ageev M. D., Kasatkin B. A., Kiselev L. V. et al. Avtomaticheskie podvodnye apparaty (Automatic underwater vehicles), Leningrad, Shipbuilding, 1981, 224 p. (in Russian).
2. Filaretov V. F., Yukhimets D. A. Sposob formirovanija programmnogo upravlenija skorostnym rezhimom dvizhenija podvodnogo apparata po proizvol’nym prostranstvennym traektorijam s zadannoj dinamicheskoj tochnost’ju (Method of software formation by the high-speed regime of underwater vehicle motion along an arbitrary spatial trajectory with a given dynamic accuracy), Izvestiya R A N. Theory and control systems, 2011, no. 4, pp. 167—170 (in Russian).
3. Kiselev L. V. Organizacija prostranstvennogo dvizhenija avtonomnogo podvodnogo apparata pri traektornom obsledovanii ob#ektov, oblastej fizicheskih polej (Organization of the spatial use of an autonomous underwater vehicle in the trajectory survey of objects, areas of physical fields), The thesis abstract for the degree of Doctor of Science, special. 05.13.01, 1997 (in Russian).
4. Filaretov V. F., Lebedev A. V., Yukhmanets D. A. Ustrojstva i sistemy upravlenija podvodnyh robotov (Devices and control systems for underwater robots), Moscow, Nauka, 2005, 213 p. (in Russian).
5. Kabanov D. S. Sintez algoritma optimal’nogo programmno-pozicionnogo upravlenija mnogorezhimnym avtomaticheskim podvodnym apparatom (Synthesis of the algorithm of optimal programpositional control of a multimode automatic submersible vehicle), Mekhatronika, Avtomatizatsiya, Upravlenie, 2014, no. 1, pp. 60—66 (in Russian).
6. Bobkov V. A. Navigacija podvodnogo robota po stereoizobrazhenijam (Navigation underwater robot on stereo images), Mekhatronika, Avtomatizatsiya, Upravlenie, 2016, vol. 17, no. 2, pp. 101—109 (in Russian).
7. Henriksen L. Detection of an underwater object based on an electrically scanned high-resolution sonar, In the materials of a symposium on autonomous technology of underwater transport, 1994, pp. 99—104.
8. Filaretov V. F., Yukhimets D. A., Mursalimov E. Sh., Toufanov I. E. Novyj metod konturnogo upravlenija dvizheniem ANPA (New method of contour control by ANPA movement), Mekhatronika, Avtomatizatsiya, Upravlenie, 2014, no. 8. pp. 46—56 (in Russian).
9. Kushnerik A. A., Mikhaylov D. N., Sergienko N. S., Shcherbatyuk A. F., Goy V. A., Toufanov I. E., Dubrovin F. S. Morskoj robototehnicheskij kompleks, vkljuchajushhij avtonomnye neobitaemye podvodnyj i vodnyj apparaty (The marine robot-technical complex, including autonomous uninhabited underwater and water vehicles), Mekhatronika, Avtomatizatsiya, Upravlenie, 2014б no. 3, pp. 67—72 (in Russian).
10. Louis DePascua. The system and method of sonar, US Patent no. 8879359. Publication Date 4.11. 2014.
11. Filippov B. I., Chernetsky G. A. Vybor ansamblja signalov dlja peredachi komand upravlenija v gidroakusticheskih kanalah svjazi (Selection of the ensemble of signals for command transmission in hydroacoustic communication channels), Izvestiya Volg-GTU, series Electronics, measuring equipment, radio engineering and communications, 2015, vol. 11, no. 3 (161), pp. 69—72 (in Russian).
12. Filippov B. I. Protokol obmena signalami v seti gidroakusticheskih donnyh avtonomnyh stancij (Protocol for the exchange of signals in a network of hydroacoustic bottom autonomous stations), Izvestiya VolgGTU, a series of electronics, measuring equipment, radio engineering and communications, 2015, vol. 12, no. 11 (176), pp. 104—111 (in Russian).
13. Filippov B. I. Opredelenie naklonnoj dal’nosti mezhdu sudnom i donnoj stanciej (Determination of the inclined distance between the court and the bottom station), Vestnik RGRTU, 2016, no. 55, pp. 33—40 (in Russian).
14. Filippov B. I. Peredacha telemetricheskoj informacii po gidroakusticheskomu kanalu svjazi (Transmission of telemetric information on the hydroacoustic communication channel), Informatsionnye tekhnologii, 2017, vol. 23, no. 9, pp. 658—663 (in Russian).
15. Filippov B. I. Algoritm funkcionirovanija sistemy izmerenija distancii s ispol’zovaniem gidroakusticheskogo kanala svjazi (A lgorithm for the functioning of a distance system using a hydroacoustic communication channel), Vestnik ASTU, Series Management, Computer Engineering and Informatics, 2016, no. 4, pp. 87—98 (in Russian).
16. Filippov B. I., Chernetsky G. A. Principy apparaturnoj realizacii sistemy izmerenija dal’nosti v gidroakusticheskih kanalah (Principles of hardware implementation of distance measuring systems in hydroacoustic channels), Radio engineering, 2017, no. 3, pp. 40—49 (in Russian).
17. Filippov B. I. Jenergeticheskij raschjot gidroakusticheskih linij svjazi (Energy calculation of hydroacoustic communication lines), Bulletin of the Astrakhan State Technical University. Series Management, Computer Science and Informatics, 2016, no. 3, pp. 81—91 (in Russian).
18. Pissmenny D. T. Lekcii po vysshej matematike (Lectures on higher mathematics: 2nd ed.), Moscow, Iris press, 2002, 288 p. (in Russian).
19. Korn G., Korn T. Spravochnik po matematike dlja nauchnyh rabotnikov i inzhenerov (Handbook of Mathematics for Scientists and Engineers), Moscow, Science, 1974, 832 p. (in Russian).
20. Mirsky G. Ya. Jelektronnye izmerenija (Electronic measurements), Recyc. and additional, Moscow, Radio and communication, 1986, 440 p. (in Russian).
Review
For citations:
Filippov B.I. Architecture of a Hydroacoustic Navigation System with a Cotton Basis for Conversion of the Underwater Apparatus to the Docking Module. Mekhatronika, Avtomatizatsiya, Upravlenie. 2019;20(3):152-161. (In Russ.) https://doi.org/10.17587/mau.20.152-161