Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

New Equations for Sea Water Density Calculation Based on Measurements of the Sound Speed

https://doi.org/10.17587/mau.20.143-151

Abstract

Density is one of the most important properties of seawater and is used in various marine research and technology. Traditionally, in the practice of oceanographic research, it is customary to consider density as a dependent  parameter, which is a function of several other parameters taken  as independent.  Usually the following three parameters are used as the independent  parameters: temperature, hydrostatic  pressure  and  salinity.  The  issues  of  temperature  and  hydrostatic  pressure  measuring  in  situ  are  technologically  well developed,  while in the salinity measuring there are still unsolved problems. This is due to the fact that salinity is such a property that it is simply impossible to determine  directly in situ. To  eliminate  the problems associated  with measurements  of salinity, the authors developed  the special new kind  equation.  That  equation  of the new kind  express the density  of sea water through independent  and in situ measured  parameters:  temperature, hydrostatic  pressure and  sound  speed.  The  novelty  of this approach  is that  using of the sound speed as the independent  parameter makes  it possible to exclude measurements  of salinity. The authors developed two such new equations  for the different cases of using. The  first new equation  is intended  for use in technical  applications and reproduces the sea water density in a wide range of the aquatic environment  parameters with a root mean square deviation  of 0.062  kg/m3. The  second more precise new equation  is intended  for scientific applications  and  reproduces the sea water density  in a narrower oceanographic range of parameters with a root mean  square deviation  of 0.0018  kg/m3.

About the Authors

A. N. Grekov
Institute of Natural and Technical Systems
Russian Federation

Grekov Aleksandr N. - PhD, Laboratory Head, Laboratory of field monitoring systems.

Sevastopol, 299011.


N. A. Grekov
Institute of Natural and Technical Systems
Russian Federation

Special Scientific Design and Technology Bureau.

Sevastopol, 299011.



E. N. Sychov
Institute of Natural and Technical Systems
Russian Federation

Laboratory of field monitoring systems.

Sevastopol, 299011.



References

1. Le Menn M. Measurements at Sea, Instrumentation and Metrology in Oceanography, pp. 295—351.

2. Le Menn M. et al. Advances in measuring ocean salinity with an optical sensor, Measurement Science and Technology, 2011, vol. 22, no. 11, pp. 1—8.

3. Grekov A. N., Grekov N. A., Sychov E. N. Metody i sredstva opredeleniya solenosti shel’fovykh zon okeanov i morey (Methods and means of determining the salinity of the shelf zones of the oceans and seas), Sistemy kontrolya okruzhayushchey sredy, Sevastopol’, IPTS, 2015, iss. 2 (22), pp. 29—34 (in Russian)

4. IOC, SCOR and I A PSO, 2010: The international thermodynamic equation of seawater — 2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English), 196 p., available at: http://www.TEOS-10.org

5. Pawlowicz R. et al. Metrological challenges for measurements of key climatological observables, Part 2: oceanic salinity, Metrologia, 2015, vol. 53. no. 1, pp. R12—R25.

6. Pawlowicz R., Wright D. G., Millero F. J. The effects of biogeochemical processes on oceanic conductivity/salinity/density relationships and the characterization of real seawater, Ocean Sci., 2011, 7, pp. 363—387, doi:10.5194/os-7-363-2011

7. McDougall T. J. et al. A global algorithm for estimating Absolute Salinity, Ocean Science, 2012, vol. 8, no. 6, pp. 1123—1134.

8. Schmidt H. et al. The density—salinity relation of standard seawater, Ocean Science, 2018, vol. 14, no. 1, pp. 15—40.

9. Allen J. T. et al. A new salinity equation for sound speed instruments, Limnology and Oceanography: Methods, 2017, vol. 15, no. 9, pp. 810—820.

10. Millero F. J. Physico-chemical controls on seawater, Treatise on Geochemistry: Second Edition, Elsevier Inc., 2013.

11. Dittmar W. Report on the scientific results of the exploring voyage of HMS Challenger, In Physics and Chemistry, 1884, vol. 1, pp. 1—251. London, HJMSO.

12. Pawlowicz R. The absolute salinity of seawater diluted by riverwater, Deep Sea Research. Part I: Oceanographic Research Papers, 2015, vol. 101, pp. 71—79.

13. Grekov A. N., Grekov N. A., Sychov E. N. Uravneniye skorosti zvuka dlya anomal’nykh zon okeanov i morey (Equation of sound speed for anomalous zones of oceans and seas), Sistemy kontrolya okruzhayushchey sredy, Sevastopol’, IPTS, 2016, iss. 4 (24), pp. 27—31 (in Russian).

14. Grekov A. N., Grekov N. A., Sychov E. N. Solevaya chast’ uravneniya skorosti zvuka dlya anomal’nykh zon okeanov (Salt part of sound velocity equation for anomalous zones of oceans and seas), Sistemy kontrolya okruzhayushchey sredy, Sevastopol’, IPTS, 2016, iss. 5 (25), pp. 12—16 (in Russian).

15. Babii V. I. On the metrology of the speed of sound in liquids, Acoustical Physics, 2017, vol. 63, no. 3, pp. 275—287.

16. Levashov D. Ye. Tekhnika ekspeditsionnykh issledovaniy: Instrumental’nyye metody i tekhnicheskiye sredst va otsenki promyslovo-znachimykh faktorov sredy (Technique of expeditionary research: Instrumental methods and technical means for assessing commercially signif icant environmental factors), Moscow, Publishing house of V NIRO, 2003 (in Russian).


Review

For citations:


Grekov A.N., Grekov N.A., Sychov E.N. New Equations for Sea Water Density Calculation Based on Measurements of the Sound Speed. Mekhatronika, Avtomatizatsiya, Upravlenie. 2019;20(3):143-151. https://doi.org/10.17587/mau.20.143-151

Views: 1092


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)