Adaptive Observer of Rotor Position and Flux for Salient Synchronous Motor
https://doi.org/10.17587/mau.20.114-121
Abstract
An algorithm of adaptive estimation of rotor flux and angular position for the salient synchronous motor with permanent magnets is presented. A new nonlinear parameterization of the dynamic motor model is proposed. Due to this parameterization the problem of position estimation is translated to the task of identification of unknown constant parameters. During the synthesis of estimation algorithm the currents and voltages of the stator windings, as well as the rotor speed, are assumed to be known signals. Two variants of the adaptive observer based on the standard gradient estimator and the algorithm of the dynamic extension of the regressor are proposed. It is proved that the both versions of the observer provide global exponential convergence of estimation errors to zero if the corresponding regression function satisfies the persistent excitation condition. Also, the latter version of the observer provides global asymptotic convergence if the regression function is square integrable. The results of numerical simulation demonstrate that the algorithm with the dynamic extension of the regressor provides a better quality of estimation transient processes in comparison with the standard gradient estimator.
Keywords
About the Authors
D. N. BazylevRussian Federation
197101, St. Petersburg
A. A. Pyrkin
Russian Federation
197101, St. Petersburg
A. A. Bobtsov
Russian Federation
D. Sc., Director, Professor
197101, St. Petersburg
References
1. Foo G., Rahman M. F. Sensorless vector control of interior permanent magnet synchronous motor drives at very low speed without signal injection, IET Elect. Power Appl., March 2010, vol. 4, no. 3, pp. 131—139.
2. Nam K. AC motor control and electric vehicle applications, CRC Press, 2010.
3. Xiao D., Rahman M. Sensorless direct torque control and flux controlled IPM synchronous machine fed by matrix converter over a wide speed range, IEEE Trans. on Ind. Informat., 2013, vol. 9, no. 4, pp. 1855—1867.
4. Kim S. Y., Ha I. J. A new observer design method for hf signal injection sensorless control of ipmsms, IEEE Trans. on Industrial Electronics, 2008, vol. 55, no. 6, pp. 2525—2529.
5. Bazylev D. N., Pyrkin A. A., Bobtsov A. A. Аlgoritm adaptivnogo bessensornogo upravleniâ sinhronnym dvigatelem (Algorithm for adaptive sensorless control of synchronous motors), Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2018, vol. 18, no. 1, pp. 24—31 (in Russian). doi: 10.17586/2226-1494-2018-18-1-24-31
6. Hinkkanen M., Tuovinen T., Harnefors L., Luomi, J. A combined position and stator-resistance observer for salient pmsm drives: design and stability analysis, IEEE Trans. on Power Electronics, 2012, vol.27, no. 2, pp. 601—609.
7. Wang Z., Lu K., Blaabjerg F. A simple startup strategy based on current regulation for backemf-based sensorless control of pmsm, IEEE Trans. On Power Electronics, 2012, vol. 27, no. 2, pp. 3817—3825.
8. Belie F. D., Sergeant P., Melkebeek J. A sensorless drive by applying test pulses without affecting the average-current samples, IEEE Trans. on Power Electronics, 2010, vol. 25, no. 4, pp. 875—888.
9. Preindl M., Schaltz E. Sensorless model predictive direct current control using novel secondorder pll observer for pmsm drive systems, IEEE Trans. on Industrial Electronics, 2011, vol. 58, no. 9, pp. 4087—4095.
10. Raca D., Garca P., Reigosa D., Briz F., Lorenz R. Carrier-signal selection for sensorless control of pm synchronous machines at zero and very low speeds, IEEE Trans. on Industry Applications, 2010, vol. 46, no. 1, pp. 167—178.
11. Kim H., Huh K. K., Lorenz R., Jahns T. A novel method for initial rotor position estimation for ipm synchronous machine drives, IEEE Trans. on Industry Applications, 2004, vol. 40, no. 5, pp. 1369—1378.
12. Boussak M. Implementation and experimental investigation of sensorless speed control with initial rotor position estimation for interior permanent magnet synchronous motor drive, IEEE Trans. on Power Electronics, 2005, vol. 20, no. 6, pp. 1413—1422.
13. Pillai H., Ortega R., Hernandez M., Devos T. Robustness analysis of position observers for permanent magnet synchronous motors vis-a-vis rotor saliency, Proc. of the 3rd International Electric Drives Production Conference (EDPC), 2013, no. 13998908.
14. Ortega R., Praly L., Astol A., Lee J., am, K. Estimation of rotor position and speed of permanent magnet synchronous motors with guaranteed stability, IEEE Transaction on Control Systems Technology, 2013, vol. 19, no. 3, pp. 601—614.
15. Chiasson J. Modeling and High Performance Control of AC Drives, Wiley, 2005.
16. Krause P. C. Analysis of electric machinery, New York, McGraw Hill, 1986, 564 p.
17. Aranovskiy S., Bobtsov A. A., Pyrkin A. A., Ortega R., Chaillet A. Flux and position observer of permanent magnet synchronous motors with relaxed persistency of excitation conditions, IFAC-PapersOnLine, 2015, vol. 48, no. 11, pp. 301—306.
18. Sastry S., Bodson M. Adaptive Control: Stability, Convergence and Robustness, Prentice Hall, Englewood Cliffs, NJ., 1989.
19. Aranovskiy S., Bobtsov A., Ortega R., Pyrkin A. Improved Transients in Multiple Frequencies Estimation via Dynamic Regressor Extension and Mixing, 12th IFAC International Workshop on Adaptation and Learning in Control and Signal Processing, 2016, vol. 49, no. 13, pp. 99—104.
20. Piippo A., Hinkkanen M., Luomi J. Adaptation of motor parameters in sensorless pmsm drives, IEEE Trans. Ind. Appl., 2009, vol. 45, no. 1, pp. 203—212.
21. Nam K. AC motor control and electric vehicle applications, CRC Press, 2010, 435 p.
Review
For citations:
Bazylev D.N., Pyrkin A.A., Bobtsov A.A. Adaptive Observer of Rotor Position and Flux for Salient Synchronous Motor. Mekhatronika, Avtomatizatsiya, Upravlenie. 2019;20(2):114-121. (In Russ.) https://doi.org/10.17587/mau.20.114-121