Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Synthesis of Tracking Algorithms for Linear Objects with a Generative Model of the Reference Signal

https://doi.org/10.17587/mau.20.72-79

Abstract

In the article the class of linear stationary objects with a scalar input is considered. The purpose of control is formulated in the form of tracking the output of the control object for a given input reference. At the same time, the principle of the internal model is used to form a generating model of the input reference. The solution of the representation subtask with a predetermined finite precision of a time-discretized input reference in the form of a linear expansion on the basic functions corresponding to the roots of the desired characteristic polynomial of a discrete linear dynamic system (generator) is considered. By using the continualization, a continuous, linear generating model of the input reference with non-zero initial conditions and input is constructed in the state space, coinciding in dimension with the model of the control object. The generating model makes it possible to formulate the control goal in the form of tracking the state vector of a closed system with the state vector of the generating model. In general, the generating model may not be stable. Therefore, the desired rate of convergence of the tracking error vector is given by the Hurwitz reference model. The developed method of generating the generating model is considered in the context of solving the general problem of the synthesis of the tracking algorithm.

About the Authors

Ju. I. Myshljaev
Bauman Moscow State Technical University
Russian Federation
Kaluga Branch, Kaluga, 248000
Ph.D., Senior lecturer




Pyi Kyaw Khaung
Bauman Moscow State Technical University
Russian Federation
Kaluga Branch, Kaluga, 248000



Ja. А. Dolgov
Bauman Moscow State Technical University
Russian Federation
Kaluga Branch, Kaluga, 248000



References

1. Johnson C. D. Accommodation of external disturbances in linear regulator and servome-chanism problems, IEEE Transactions on Automatic Control, 1971, vol. 16, no. 6, pp. 635—644.

2. Johnson C. D. Teorija reguljatorov, prisposablivajushhihsja k vozmushhenijam. Gl. VII v kn.: Fil’tracija i stohasticheskoe upravlenie v dinamicheskih sistemah (Theory of regulators adapting to disturbances. Ch. VII // Filtration and stochastic control in dynamic systems). Moscow, Mir, 1980, pp. 253—320 (in Russisn).

3. Wonham W. M. Linejnye mnogomernye sistemy upravlenija: Geometricheskij podhod (Linear multidimensional control systems: Geometric approach), Moscow, Nauka, 1980, 376 p. (in Russisn).

4. Filimonov N. B. Identifikacija sostojanija i vneshnej sredy diskretnyh dinamicheskih ob’ektov metodom polijedral’nogo programmirovanija (Identification of the state and environment of discrete dynamic objects by the method of polyhedral programming), Mekhatronika, avtomatizatsiya, upravlenie, 2003, no. 2, pp. 11—15 (in Russisn).

5. Francis B. A., Wonham W. M. The internal model principle for linear multivariable regulators, Applied Mathematics and Optimization, 1975, vol. 2, no. 2, pp. 170—194.

6. Davison E. J. The robust control of a servomechanism problem for linear time-invariant multivariable systems, IEEE Transactions on Automatic Control, 1976, vol. 21, no. 1, pp. 25—34.

7. Luk’janova G. V., Nikiforov V. O. Algoritm kompensacii vneshnih determinirovannyh vozmushhenij: operatornyj metod sinteza (Algorithm for Compensating External Deterministic Perturbations: Operator Method of Synthesis), Nauchno-tehnicheskij vestnik SPbGU ITMO, 2003, no. 10, pp. 5—10 (in Russisn).

8. Di Benedetto M. D. Synthesis of an internal model for nonlinear output regulation, International Journal of Control, 1987, vol. 45, no. 3, pp. 1023—1034.

9. Khalil H. K. Robust servomechanism output feedback controller for feedback lineariza-ble systems, Automatica, 1994, vol. 30, no. 10, pp. 1587—1599

10. Nikiforov V. O. Nelinejnaja sistema upravlenija s kompensaciej vneshnih determinirovannyh vozmushhenij (Nonlinear control system with compensation of external deterministic disturbances), Izvestija RAN. Teorija i sistemy upravlenija, 1997, no. 4, pp. 69—73 (in Russisn).

11. Nikiforov V. O. Adaptivnaja stabilizacija linejnogo ob#ekta, podverzhennogo vneshnim determinirovannym vozmushhenijam (Adaptive stabilization of a linear object subject to external deterministic disturbances), Izvestija RAN. Teorija i sistemy upravlenija, 1997, no. 2, pp. 103—106 (in Russisn).

12. Nikiforov V. O. Adaptive non-linear tracking with complete compensation of unknown disturbances, European Journal of Control, 1998, vol. 4, no. 2, pp. 132—139.

13. Nikiforov V. O. Nonlinear servocompensation of unknown external disturbances, Automatica, 2001, vol. 37, pp. 1647—1653.

14. Myshljaev Ju. I. Ob odnom podhode k resheniju zadachi slezhenija s zhelaemoj spektral’noj dinamikoj (On one approach to solving the tracking problem with the desired spectral dynamics), Trudy FGUP "NPCAP im. akademika N. A. Piljugina". Sistemy i pribory upravlenija, 2016, no. 4, pp. 5—11 (in Russisn).

15. Utrobin G. F., Koljada Ju. I., Zhuravlev R. D. Operativnoe opredelenie porjadka i kojefficientov nestacionarnoj volnovoj struktury izmerjaemogo signala (Operative determination of the order and coefficients of the unsteady wave structure of the measured signal), Priborostroenie, 1989, no. 5, pp. 3—7 (in Russisn).

16. Utrobin G. F., Myshljaev Ju. I., Krasnoshhechenko V. I., Myshljaeva S. V. Fil’tracija diskretnyh signalov metodom strukturnogo pogruzhenija, Trudy FGUP "NPCAP im. akademika N. A. Piljugina". Sistemy i pribory upravlenija, 2016, no. 2, pp. 36—44 (in Russisn).

17. Myshljaev Ju. I., Tar Yar Myo. Algoritmy skorostnogo bigradienta dlja linejnyh sistem s zhelaemoj spektral’noj dinamikoj po vyhodu konechnogo kaskada (Filtering Discrete Signals by Structural Immersion), Jekonomika i menedzhment sistem upravlenija, 2016, no. 3.1(21), pp. 183—191 (in Russisn).


Review

For citations:


Myshljaev J.I., Khaung P.K., Dolgov J.А. Synthesis of Tracking Algorithms for Linear Objects with a Generative Model of the Reference Signal. Mekhatronika, Avtomatizatsiya, Upravlenie. 2019;20(2):72-79. (In Russ.) https://doi.org/10.17587/mau.20.72-79

Views: 886


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)