Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Output Feedback Algorithm for Nonlinear Systems with Compensation of Bounded Disturbances and Measurement Noises

https://doi.org/10.17587/mau.20.3-15

Abstract

The output feedback algorithm for dynamic plants with compensation of parametric uncertainty, external disturbances and measurement noises is synthesized. The plants are described by a nonlinear system of differential equations with vector input and output signals. Unlike most existing control schemes in this paper the dimensions of the measurement interference and the output signal are equal, the sources of the signals of disturbances and disturbances are different, parametric and external disturbances can be present in any equation of the plant model. For simultaneous compensation of disturbances and measurement noises it is proposed to consider two channels. On the first channel a part of the measurement noises will be estimated which will allow partial recovery the information about the plant noisy output. On the second channel the disturbances will be compensated. Thus, at least two independent measurement channels are required for simultaneous compensation of disturbances and measurement noises. Sufficient conditions for calculating the parameters of the algorithm in the form of solvability of the linear matrix inequality are obtained. It is shown that the equation of a closed-loop system obtained on the basis of the proposed algorithm depends on the disturbances and the smallest component of the measurement noise. However, if the smallest component cannot be identified a priory, the results of the transients depend on the component of the noise that will be selected in the synthesis of the control system. Thus, unlike most existing control schemes, where the equation of a closed-loop system depends on disturbance and noise, the resulting algorithm provides better transients, because they do not depend on the entire noise vector, but only on its smallest (one) component. The simulations for a third-order nonlinear plant and the synchronization of an electrical generator connected to the power grid are presented. Numerical examples illustrate the effectiveness of the proposed scheme and the robustness with respect to random components in the noises and disturbances.

About the Authors

I. B. Furtat
Institute of Problems of Mechanical Engineering Russian Academy of Sciences. ITMO University.
Russian Federation
D. Sc., Assistant Professor.


P. A. Gushchin
Institute of Problems of Mechanical Engineering Russian Academy of Sciences. ITMO University.
Russian Federation


A. A. Peregudin
Institute of Problems of Mechanical Engineering Russian Academy of Sciences. ITMO University.
Russian Federation


References

1. Fradkov A. L., Andrievsky B., Evans R. J. Synchronization of Passifiable Lurie Systems Via Limited-Capacity Communication Channel, IEEE Trans. on Circuits and Systems—I: Regular papers, 2009, vol. 56, no. 2, pp. 430—439.

2. Andrievsikj B. R., Matveev A. S., Frakdov A. L. Upravlenie i ocenivanie pri informacionnyh ogranichenijah: k edinoj teorii upravlenija, vychislenij i svjazi (Control and estimation with informational limitations), Automatika i Telemekhanika, 2010, no. 4, pp. 34—99 (in Russian).

3. Fradkov A. L., Andrievsky B., Ananyevskiy M. S. Passification based synchronization of nonlinear systems under communication constraints and bounded disturbances, Automatica, 2015, vol. 55, pp. 287—293.

4. Furtat I. B., Fradkov A. L., Liberzon D. Compensation of disturbances for MIMO systems with quantized output, Automatica, 2015, vol. 60, pp. 239—244.

5. Fradkov A. L., Andrievsky B., Peaucelle D. Estimation and Control Under Information Constraints for LAAS Helicopter Benchmark, IEEE Trans. on Control Systems Technology, 2010, vol. 18, no. 5, pp. 1180—1187.

6. Furtat I. B., Fradkov A. L. Robust control of multi-machine power systems with compensation of disturbances, International Journal of Electrical Power & Energy Systems, 2015, vol. 73, pp. 584—590.

7. Stepanov O. A. Osnovy teorii ocenivanija s prilozhenijami k zadacham obrabotki navigacionnoj informacii, uchebnoe posobie dlja vuzov (Basics of estimation theory with applications), SPb, Jelektropribor, 2009 (in Russian).

8. Oppengejm A., Shafer R. Cifrovaja obrabotka signalov (Digital signal processing), Moscow, Tehnosfera, 2007 (in Russian).

9. Kvakernaak H., Sivan R. Linejnye optimal’nye sistemy upravlenija (Linear optimal control systems), Moscow, Mir, 1977 (in Russian).

10. Paarmann L. D. Design and Analysis of Analog Filters: A Signal Processing Perspective, Springer Science & Business Media, 2001.

11. Haykin S. Adaptive Filter Theory, Prentice-Hall, Inc., 1991.

12. Katzenelson J., Gould L. A. The design of nonlinear filters and control systems. Part II, Information and Control, 1964, vol. 7, no. 2, pp. 117—145.

13. Brammer K., Ziffling G. Fil’tr Kalmana-B’jusi. Determinirovannoe nabljudenie i stohasticheskaja fil’tracija (The KalmanBusch filter. Deterministic observation and stochastic filtration), Moscow, Nauka, 1982 (in Russian).

14. Stepanov O. A. Fil’tr Kalmana. Istorija i sovremennost’ (Kalman Filter. History and modernity), Giroskopija i Navigacija, 2010, no. 2 (69), pp. 107—121 (in Russian).

15. Ahrens J., Khalil K. High-gain observers in the presence of measurement noise: A switched-gain approach, Automaica, 2009, vol. 45, pp. 936—943.

16. Boizot N., Busvelle E., Gauthier J. An adaptive high-gain observer for nonlinear systems, Automatica, 2010, vol. 46, pp. 1483—1488.

17. Sanfelice R., Praly L. On the performance of high-gain observers with gain adaptation under measurement noise, Automatica, 2011, vol. 47, pp. 2165—2176.

18. Prasov A., Khalil H. A nonlinear high-gain observer for systems with measurement noise in a feedback control framework, IEEE Trans. Automat. Contr., 2013, vol. 58, pp. 569—580.

19. Wang L., Astolfy D., Hongye S., Marconi L., Isidori A. Output stabilization for a class of nonlinear systems via high-gain observer with limited gain power, IFACPapersOnLine, 2015, vol. 48, pp. 730—735.

20. Astolfy D., Marconi L. A high-gain nonlinear observer with limited gain power, IEEE Trans. Automatic Control, 2015, vol. 60, pp. 3059—3064.

21. Nekhoroshikh A., Furtat I. Robust Stabilization of Linear Plants under Uncertainties and High-Frequency Measurement Noises, Proc. of the 25th Mediterranean Conference on Control and Automation, Malta, 2017.

22. Egupov N.D. ed. Metody robastnogo, nejro-nechetkogo i adaptivnogo upravlenija (Methods of robust, fuzzy and adaptive control), Moscow, Publishing house of MTTU im. N. Je. Baumana, 2002 (in Russian).

23. Pigg S., Bodson M. Adaptive Algorithms for the Rejection of Sinusoidal Disturbances Acting on Unknown Plants, IEEE Trans. on Control Systems Technology, 2010, vol. 18, no. 4, pp. 822—836.

24. Poljak B. T., Topunov M. V. Podavlenie ogranichennyh vneshnih vozmushhenij: upravlenie po vyhodu (Suppression of bounded exogenous disturbances: Output feedback), Automatika i Telemekhanika, 2008, no. 5, pp. 72—90 (in Russian).

25. Cykunov A. M. Robastnoe upravlenie s kompensaciej vozmushhenij (Robust control with compensations of disturbances), Moscow, Fizmatlit, 2012 (in Russian).

26. Furtat I. B. Control of Linear Time-Invariant Plants with Compensation of Measurement Noises and Disturbances, Accepted at the 56th IEEE Conference on Decision and Control (CDC2017), December 12—15, 2017, Melbourne, Australia.

27. Furtat I. B. Disturbance Compensation Algorithm Under Saturation of Control Signal, Proc. of the 20th World Congress of The International Federation of Automatic Control, France, 2017, pp. 6724—6729.

28. Anderson P. M., Fouad A. A. Power Systems Control and Stability, Iowa State University Press, 1997.

29. Guo G., Hill D. J., Wang Y. Nonlinear output stabilization control for multimachine power systems, IEEE Trans. on Circuits and Systems, 2000, Part 1, vol. 47, no. 1, pp. 46—53.

30. Dehghani M., Nikravesh S. K. Y. Nonlinear state space model identification of synchronous generator, Electric Power Systems Research, 2008, vol. 78, pp. 926—940.

31. Fridman E. A refined input delay approach to sampleddata control, Automatica, 2010, vol. 46, pp. 421—427.


Review

For citations:


Furtat I.B., Gushchin P.A., Peregudin A.A. Output Feedback Algorithm for Nonlinear Systems with Compensation of Bounded Disturbances and Measurement Noises. Mekhatronika, Avtomatizatsiya, Upravlenie. 2019;20(1):3-15. (In Russ.) https://doi.org/10.17587/mau.20.3-15

Views: 2771


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)