Output Feedback Algorithm for Nonlinear Systems with Compensation of Bounded Disturbances and Measurement Noises
https://doi.org/10.17587/mau.20.3-15
Abstract
About the Authors
I. B. FurtatRussian Federation
D. Sc., Assistant Professor.
P. A. Gushchin
Russian Federation
A. A. Peregudin
Russian Federation
References
1. Fradkov A. L., Andrievsky B., Evans R. J. Synchronization of Passifiable Lurie Systems Via Limited-Capacity Communication Channel, IEEE Trans. on Circuits and Systems—I: Regular papers, 2009, vol. 56, no. 2, pp. 430—439.
2. Andrievsikj B. R., Matveev A. S., Frakdov A. L. Upravlenie i ocenivanie pri informacionnyh ogranichenijah: k edinoj teorii upravlenija, vychislenij i svjazi (Control and estimation with informational limitations), Automatika i Telemekhanika, 2010, no. 4, pp. 34—99 (in Russian).
3. Fradkov A. L., Andrievsky B., Ananyevskiy M. S. Passification based synchronization of nonlinear systems under communication constraints and bounded disturbances, Automatica, 2015, vol. 55, pp. 287—293.
4. Furtat I. B., Fradkov A. L., Liberzon D. Compensation of disturbances for MIMO systems with quantized output, Automatica, 2015, vol. 60, pp. 239—244.
5. Fradkov A. L., Andrievsky B., Peaucelle D. Estimation and Control Under Information Constraints for LAAS Helicopter Benchmark, IEEE Trans. on Control Systems Technology, 2010, vol. 18, no. 5, pp. 1180—1187.
6. Furtat I. B., Fradkov A. L. Robust control of multi-machine power systems with compensation of disturbances, International Journal of Electrical Power & Energy Systems, 2015, vol. 73, pp. 584—590.
7. Stepanov O. A. Osnovy teorii ocenivanija s prilozhenijami k zadacham obrabotki navigacionnoj informacii, uchebnoe posobie dlja vuzov (Basics of estimation theory with applications), SPb, Jelektropribor, 2009 (in Russian).
8. Oppengejm A., Shafer R. Cifrovaja obrabotka signalov (Digital signal processing), Moscow, Tehnosfera, 2007 (in Russian).
9. Kvakernaak H., Sivan R. Linejnye optimal’nye sistemy upravlenija (Linear optimal control systems), Moscow, Mir, 1977 (in Russian).
10. Paarmann L. D. Design and Analysis of Analog Filters: A Signal Processing Perspective, Springer Science & Business Media, 2001.
11. Haykin S. Adaptive Filter Theory, Prentice-Hall, Inc., 1991.
12. Katzenelson J., Gould L. A. The design of nonlinear filters and control systems. Part II, Information and Control, 1964, vol. 7, no. 2, pp. 117—145.
13. Brammer K., Ziffling G. Fil’tr Kalmana-B’jusi. Determinirovannoe nabljudenie i stohasticheskaja fil’tracija (The KalmanBusch filter. Deterministic observation and stochastic filtration), Moscow, Nauka, 1982 (in Russian).
14. Stepanov O. A. Fil’tr Kalmana. Istorija i sovremennost’ (Kalman Filter. History and modernity), Giroskopija i Navigacija, 2010, no. 2 (69), pp. 107—121 (in Russian).
15. Ahrens J., Khalil K. High-gain observers in the presence of measurement noise: A switched-gain approach, Automaica, 2009, vol. 45, pp. 936—943.
16. Boizot N., Busvelle E., Gauthier J. An adaptive high-gain observer for nonlinear systems, Automatica, 2010, vol. 46, pp. 1483—1488.
17. Sanfelice R., Praly L. On the performance of high-gain observers with gain adaptation under measurement noise, Automatica, 2011, vol. 47, pp. 2165—2176.
18. Prasov A., Khalil H. A nonlinear high-gain observer for systems with measurement noise in a feedback control framework, IEEE Trans. Automat. Contr., 2013, vol. 58, pp. 569—580.
19. Wang L., Astolfy D., Hongye S., Marconi L., Isidori A. Output stabilization for a class of nonlinear systems via high-gain observer with limited gain power, IFACPapersOnLine, 2015, vol. 48, pp. 730—735.
20. Astolfy D., Marconi L. A high-gain nonlinear observer with limited gain power, IEEE Trans. Automatic Control, 2015, vol. 60, pp. 3059—3064.
21. Nekhoroshikh A., Furtat I. Robust Stabilization of Linear Plants under Uncertainties and High-Frequency Measurement Noises, Proc. of the 25th Mediterranean Conference on Control and Automation, Malta, 2017.
22. Egupov N.D. ed. Metody robastnogo, nejro-nechetkogo i adaptivnogo upravlenija (Methods of robust, fuzzy and adaptive control), Moscow, Publishing house of MTTU im. N. Je. Baumana, 2002 (in Russian).
23. Pigg S., Bodson M. Adaptive Algorithms for the Rejection of Sinusoidal Disturbances Acting on Unknown Plants, IEEE Trans. on Control Systems Technology, 2010, vol. 18, no. 4, pp. 822—836.
24. Poljak B. T., Topunov M. V. Podavlenie ogranichennyh vneshnih vozmushhenij: upravlenie po vyhodu (Suppression of bounded exogenous disturbances: Output feedback), Automatika i Telemekhanika, 2008, no. 5, pp. 72—90 (in Russian).
25. Cykunov A. M. Robastnoe upravlenie s kompensaciej vozmushhenij (Robust control with compensations of disturbances), Moscow, Fizmatlit, 2012 (in Russian).
26. Furtat I. B. Control of Linear Time-Invariant Plants with Compensation of Measurement Noises and Disturbances, Accepted at the 56th IEEE Conference on Decision and Control (CDC2017), December 12—15, 2017, Melbourne, Australia.
27. Furtat I. B. Disturbance Compensation Algorithm Under Saturation of Control Signal, Proc. of the 20th World Congress of The International Federation of Automatic Control, France, 2017, pp. 6724—6729.
28. Anderson P. M., Fouad A. A. Power Systems Control and Stability, Iowa State University Press, 1997.
29. Guo G., Hill D. J., Wang Y. Nonlinear output stabilization control for multimachine power systems, IEEE Trans. on Circuits and Systems, 2000, Part 1, vol. 47, no. 1, pp. 46—53.
30. Dehghani M., Nikravesh S. K. Y. Nonlinear state space model identification of synchronous generator, Electric Power Systems Research, 2008, vol. 78, pp. 926—940.
31. Fridman E. A refined input delay approach to sampleddata control, Automatica, 2010, vol. 46, pp. 421—427.
Review
For citations:
Furtat I.B., Gushchin P.A., Peregudin A.A. Output Feedback Algorithm for Nonlinear Systems with Compensation of Bounded Disturbances and Measurement Noises. Mekhatronika, Avtomatizatsiya, Upravlenie. 2019;20(1):3-15. (In Russ.) https://doi.org/10.17587/mau.20.3-15