Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Algorithm of the Time-Optimal Reorientation of an Axially Symmetric Spacecraft in the Class of Conical Motions

https://doi.org/10.17587/mau.19.797-805

Abstract

The problem of the time-optimal turn of a spacecraft as a rigid body with one axis of symmetry and bounded control function in absolute value is considered in the quaternion statement. For simplifying problem (concerning dynamic Euler equations), we change the variables reducing the original optimal turn problem of axially symmetric spacecraft to the problem of optimal turn of the rigid body with spherical mass distribution including one new scalar equation. Using the Pontryagin maximum principle, a new analytical solution of this problem in the class of conical motions is obtained. Algorithm of the optimal turn of a spacecraft is given. An explicit expression for the constant in magnitude optimal angular velocity vector of a spacecraft is found. The motion trajectory of a spacecraft is a regular precession. The conditions for the initial and terminal values of a spacecraft angular velocity vector are formulated. These conditions make it possible to solve the problem analytically in the class of conical motions. The initial and the terminal vectors of spacecraft angular velocity must be on the conical surface generated by arbitrary given constant conditions of the problem. The numerical example is presented. The example contain optimal reorientation of the Space Shuttle in the class of conical motions.

About the Authors

Ya. G. Sapunkov
Precision Mechanics and Control Problems Institute of RAS
Russian Federation


A. V. Molodenkov
Precision Mechanics and Control Problems Institute of RAS
Russian Federation
Corresponding author: Molodenkov Aleksey V., Ph. D., Senior Researcher, Precision Mechanics and Control Problems Institute of RAS, Saratov


T. V. Molodenkova
Yu. A. Gagarin Saratov State Technical University
Russian Federation


References

1. Branets V. N., Shmyglevskij I. P. Primenenie kvaternionov v zadachax orientacii tverdogo tela (The Use of Quaternions in Problems of Orientation of Solid Bodies), Moscow, Nauka, 1973. 320 p. (in Russian).

2. Scrivener S. L., Thompson R. C. Survey of time-optimal attitude maneuvers, J. guidance, control, and dynamics, 1994, vol. 17, no. 2, pp. 225—233.

3. Petrov B. N., Bodner V. A., Alekseev K. B. Analiticheskoe reshenie zadachi upravleniya prostranstvennym povorotnym manevrom (Analytical Solution of the Spatial Slew Manuever),Doklady Akademii Nauk SSSR, 1970, vol.192, no. 6, pp. 1235—1238 (in Russian).

4. Branets V. N., Chertok M. B., Kaznacheev Yu. V. Optimal’nyj razvorot tverdogo tela s odnoj osyu simmetrii (Optimal Slew of a Solid Body with a Single Symmetry Axis), Kosmicheskie Issledovaniya, 1984, vol. 22, no. 3, pp. 352—360 (in Russian).

5. Sirotin A. N. Optimal’noe upravlenie pereorientaciej simmetrichnogo tverdogo tela iz polozheniya pokoya v polozhenie pokoya (Optimal Reorientation of a Symmetric Solid Body from a State of Rest to Another State of Rest), Izvestiya Akademii Nauk SSSR. Mekh. Tverd. Tela, 1989, no. 1, pp. 36—46 (in Russian).

6. Levskij M. V. Primenenie principa maksimuma L. S. Pontryagina k zadacham optimal’nogo upravleniya orientaciej kosmicheskogo apparata (Pontryagin’s Maximum Principle in Optimal Control Problems of Orientation of a Spacecraft, Izvestiya Rossiyskoi Akademii Nauk. Teoriya i Sistemy Upravleniya, 2008, no. 6, pp. 144—157 (in Russian).

7. Molodenkov A. V., Sapunkov Ya. G. A New Class of Analytic Solutions in the Optimal Turn Problem for a Spherically Symmetric Body, Mech. Solids, 2012. vol. 47, no. 2, pp. 167—177.

8. Molodenkov A. V., Sapunkov Ya. G. Analytical Solution of the Optimal Attitude Maneuver Problem with a Combined Objective Functional for a Rigid Body in the Class of Conical Motions, Mech. Solids, 2016, vol. 51, no. 2, pp. 135—147.

9. Sapunkov Ya. G., Molodenkov A. V. Algoritm optimal’nogo po bystrodeystviyu razvorota kosmicheskogo apparata v klasse konicheskix dvizhenij (Algorithm of the Time-Optimal Turn of a Spacecraft in the Class of Conical Motion), Mekhatronika, Avtomatizatsiya, Upravlenie, 2013, no. 10, pp. 66—70 (in Russian).

10. Pontryagin L. S., Boltyanskij V. G., Gamkrelidze R. V., Mishhenko E. F. Matematicheskaya teoriya optimal’nyx processov (The Mathematical Theory of Optimal Processes), Moscow, Nauka, 1961, 384 p. (in Russian).

11. Li. F., Bainum P. M. Numerical Approach for Solving Rigid Spacecraft Minimum Time Attitude Maneuvers, J. Guidance, Control, and Dynamics, 1990, vol. 13, no. 1, pp. 38—45.

12. Zelepukina O. V., Chelnokov Yu. N. Kvaternionnoe reshenie zadach upravleniya uglovym dvizheniem dinamicheski simmetrichnogo kosmicheskogo apparata (Quaternion Solution of Control Problems of Angular Motion of Dynamically Symmetric Spacecraft), in Proc. of Int. Conf. of Problems and Perspectives of Precision Mechanics, Precision Mech. and Cont. Problems. Inst., Rus. Acad. of Sci., Saratov, 2002, pp. 180—188 (in Russian).


Review

For citations:


Sapunkov Ya.G., Molodenkov A.V., Molodenkova T.V. Algorithm of the Time-Optimal Reorientation of an Axially Symmetric Spacecraft in the Class of Conical Motions. Mekhatronika, Avtomatizatsiya, Upravlenie. 2018;19(12):10.17587/mau.19.797-805. (In Russ.) https://doi.org/10.17587/mau.19.797-805

Views: 545


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)