Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Competitive Coriolis Vibrating Gyroscope with a Metal Resonator

https://doi.org/10.17587/mau.19.777-787

Abstract

The article deals with the design and features of manufacturing a Coriolis vibrating gyroscope (CVG, angular rate sensor) with a metal resonator. Piezoelectric elements are used to excite and detect oscillations of the resonator.

The design of the resonator is very important, because the technical characteristics of the CVG mainly depend on the resonator. For the production of a high-quality metal resonator with predetermined properties, a good choice is the precision alloy of 21NKMT-VI. Elimination of defects in the manufacture of the resonator, which lead to a variety of frequencies and variability, is achieved by balancing. The basic method is balancing in the 4th form of the distribution of mass defects. Calibration of the CVG with the electronics unit is the final stage of the CVG manufacturing, which results in: providing a resonance tuning condition for the sensing element, determining the feedback coefficients of the oscillation retention loop, determining the metrological characteristics of the CVG, and obtaining the correction function of the output signal from various parameters after the test complex.

When determining the correction function, the fact was taken into account that the signals for suppressing the quadrature and coriolis components are not absolutely independent. When the node signal is demodulated to quadrature and coriolis components, it is necessary to analyze the signal passed through piezoelectric elements, amplifiers and ADC. Each of these elements adds a temperature-dependent phase shift to the node signal. This phase shift can be taken into account, but not with absolute accuracy. Therefore, the output signal of the CVG should be considered as a linear combination of signals of the quadrature and coriolis components of the compensation signal. To reduce the noise of the output signal, it is possible to use various types of noise suppressing filters

The results of tests of the CVG confirming its competitiveness in comparison with the commercial analogue. The electronic control module can be designed using the Russian element base.

About the Authors

V. Ya. Raspopov
Federal State Budgetary Educational Establishment of Higher Education
Russian Federation
Corresponding author: Raspopov Vladimir Ya., Doctor of Technical Science, Professor, Federal State Budgetary Educational Establishment of Higher Education, Tula, 300012, Tula Branch


A. V. Ladonkin
Federal State Budgetary Educational Establishment of Higher Education
Russian Federation


V. V. Likhosherst
Federal State Budgetary Educational Establishment of Higher Education
Russian Federation


References

1. Bryan G. H. On the Beats in the Vibrations of a Revolving Cylinder or Bell, Proc. of Cambridge Phil. Soc., 1890, Nov. 24, vol. VII, part. III, pp. 101—111.

2. Coriolis G. G., Mmoire sur les quations du movement relative des systms de corps (On the Equation of Relative Motion of a Systems of Bodies), J. Ec. Polytech, 1835, no. 15, pp. 142—154.

3. Lynch D. D. Vibration-induced drift in the hemi-spherical resonator gyro, Proc. Annual Meeting of the Institute of Navigation, 23—25 June, 1987, Dayton, Ohio, pp. 34—37.

4. Zhuravlev V. F., Klimov D. M. Volnovoi tverdotelniy giroskop (Wave solid-state gyroscope), Moscow, Nauka, 1985, 125 p. (in Russian)

5. Peshehonov V. G. Giroskopi nachala XXI veka (Gyroscopes of the beginning of the XXI century), Giroskopiya i Navigaciya, 2003, no. 4, pp. 5—18 (in Russian)

6. Lynch D. Vzglyad kompanii "NORTROPGRUMMAN" na razvitie inercialnih tehnologiy ( The view of NORTHROP GUMMAN on the development of inertial technologies), Giroskopiya i Navigaciya, 2008, no. 3, pp. 102—106 (in Russian)

7. Lunin B. S., Matveev V. A., Basarab M. A. Volnovoy tverdotelniy giroskop. Teoriya i tehnologia (Wave solid-state gyroscope. Theory and technology), Moscow, Radiotehnika, 2014, 176 p. (in Russian)

8. Matveev V. A., Lipatnikov V. I., Alehin A. V. Proektirovanie volnovogo tverdotelnogo giroskopa (Designing of a wave solid-state gyroscope), Moscow, Publishing house of MGTU im. N. E. Baumana, 1997, 165 p. (in Russian)

9. Lunin B. S. Fiziko-himicheskie osnovi razrabotki polusfericheskih resonatorov volnovih tverdotelnih giriscopov (Physicochemical bases of development of hemispherical resonators of wave solid-state gyroscopes), Moscow, Publishing house of MAI, 2005, 244 p. (in Russian).

10. Basarab M. A., Kravchenko V. F., Matveev V. A. Matematicheskoe modelirovanie fizicheskih processov v giroscopii (Mathematical modeling of physical processes in gyroscopy), Moscow, Radiotehnika, 2005, 176 p. (in Russian)

11. Chikovani V. V., Yatsenko Yu. A., Kovalenko V. A., Scherban V. I. Digitally controlled High Accuracy Metallic Resonator CVG, Proc/ Symposium Gyro Technology, Stuttgart, 2006, pp. 4.0—4.7.

12. Chikovani V. V., Yatzenko Yu. A., Barbashov A. S., Kovalenko V. A., Scherban V. I., Marusyk P. I. Metallic Resonator CVG Thermophysical Parameter Optimization and Temperature Test Results, Proc. Of XIV International Conference on Integreted Navigation Systems (28—30 May 2007. St-Petersburg), St-Petersburg, "Electropribor", 2007, pp. 74—77.

13. Chikovani V. V., Yatzenko Yu. A., Barbashov A. S. et al. Improved accuracy metallic resonator CVG, Proc. of XV International Conference on Integreted Navigation Systems (26—28 May 2008. St-Petersburg), St-Petersburg, Publishing house of "Electropribor", 2008, pp. 28—31.

14. Chikovani V. V., Yatzenko Yu. A., Mikoloshin I. T. Shock and vibration sensistivity test result for metallic resonator CVG, Proc. of XVI International Conference on Integreted Navigation Systems (25—27 May 2008. St-Petersburg), St-Petersburg, Publishing house of "Electropribor", 2009, pp. 88—92.

15. Chikovani V. V., Yatzenko Yu. A. Investtigation of azimuth accuracy measurement with metallic resonator Coriolis vibratory gyroscope, Proc. of XVII International Conference on Integreted Navigation Systems (31 May — 2 June 2010. St-Petersburg). St-Petersburg, Publishing house of "Electropribor", 2010, pp. 25—30.

16. Chumankin E. A. Resultati proektirovaniya i ispitaniy datchika uglovoi skorosti na osnove volnovogo tverdotelnogo giroskopa (Results of designing and testing the angular rate sensor based on the wave solid-state gyro), Giroskopiya i Navigaciya, 2013, no. 2 (81), pp. 104—111 (in Russian)

17. Lahtin Yu. M. Metallovedenie i termicheskaya obrabotka metallov. Izdanie 3-e, pererabotannoe I dopolnennoe (Metallurgy and heat treatment of metals. Third edition, revised and enlarged), Moscow, Metallurgiya, 1983, 359 p. (in Russian)

18. Molotilov B. V. Precizionnie splavi. Spravochnik (Precision alloys. Handbook), Moscow, Metallurgiya, 1974, 448 p. (in Russian)

19. Arzamasov B. N., Soloviev T. V., Gerasimov S. A. Spravochnik po konstrukchionim materialam: Spravochnik (Handbook of Structural Materials: Handbook), Moscow, Publishing house of MGTU im. N. E. Baumana, 2006, 640 p. (in Russian)

20. Egarin N. E., Yurin V. E. Vvedenie v teoriyu vibracionnih giroscopov (Introduction to the theory of vibrational gyroscopes), Moscow, Binom, 1993, 111 p. (in Russian).

21. Zhbanov Yu. K., Zhuravlev V. F. O balansirovke volnovogo tverdotelnogo giroskopa (On balancing a wave solid-state gyroscope, Izv. RAN. MTT, no. 4. (in Russian)


Review

For citations:


Raspopov V.Ya., Ladonkin A.V., Likhosherst V.V. Competitive Coriolis Vibrating Gyroscope with a Metal Resonator. Mekhatronika, Avtomatizatsiya, Upravlenie. 2018;19(12):777-787. (In Russ.) https://doi.org/10.17587/mau.19.777-787

Views: 1605


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)