Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Sertain Problematic Aspects of Fuzzy PID Regulation

https://doi.org/10.17587/mau/19.762-769

Abstract

In recent years in view of the fact that the interest in the technologies of artificial intelligence in control systems by technical objects and technological processes are aroused, that fuzzy controllers find use more often. The given regulators carry out the process of the development of controlling actions on the basis of fuzzy logic, the application of which provides the design of control systems capable of functioning in conditions of incompleteness and fuzziness of knowledge about the dynamics of the control object. Fuzzy regulators have opened a new direction in the area of automatic control and according to many experts have a promising future. The given paper analyzes the dynamic characteristics and algorithmic singularities of fuzzy PID-regulation systems, compares the quality of clear and fuzzy regulation. The conducted analysis allows to state the absence of any real advantages of fuzzy regulators in comparison with classic clear regulators. Moreover, it is possible to distinguish a number of problematic aspects of fuzzy regulation methodology, important for practical automation:

  • fuzzy control algorithms are much more complex than traditional clear regulation algorithms;
  • the thesis about the advantages of fuzzy regulators seems to be reasonable, since each such regulator can be replaced by a more efficient and structurally less complex clear regulator;
  • the thesis that on the basis of fuzzy approach it is possible to synthesize working systems of regulation without a priori knowledge and pre-project inspection of dynamic properties of objects of regulation is disputable.
  • fuzzy approach is purely empirical and does not allow to solve the problems of stability, dynamic quality and robustness of the synthesized regulation systems at the theoretical level;
  • fuzzy control algorithms are not applicable to complex dynamic objects. In particular, it concerns multi-connected objects of regulation and objects with delay;
  • the methodology of fuzzy regulation does not allow to solve the important issues of optimization of regulation processes for engineering practice.

About the Authors

A. B. Filimonov
Lomonosov Moscow State University
Russian Federation


N. B. Filimonov
Lomonosov Moscow State University
Russian Federation
Corresponding author: Filimonov Nikolay B., Dr. Sci. Tech., Professor, Lomonosov Moscow State University, Moscow, 119991, Russian Federation


References

1. Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A Zadeh (Advances in Fuzzy Systems — Applications and Theory: vol. 6), Klir G. J. and Yuan B. ed., New York, World Scientific Pres, 1996.

2. Asai K., Vatada D., Ivai S. i dr. Prikladnye nechetkie sistemy (Applied fuzzy systems), T. Tehrano, K. Asai, M. Sugehno ed., Moscow, Mir, 1993 (in Russian).

3. Ross T. J. Fuzzy Logic with Engineering Applications, Hoboken, NJ, Wiley, 2016.

4. Passino K. M., Yurkovich S. Fuzzy Control, Addison Wesley Longman, Menio Park, CA, 1998.

5. Demenkov N. P. Nechetkoe upravlenie v tekhnicheskih sistemah (Fuzzy control in technical systems), Moscow, Publishing house of MGTU im. N. EH. Baumana, 2005 (in Russian).

6. Michels K., Klawonn F., Kruse R., Nürnberger A. Fuzzy Control: Fundamentals, Stability and Design of Fuzzy Controllers, Springer Verlag, Berlin, Heidelberg, New York, 2006.

7. Burakov M. V. Nechetkie regulyatory (Fuzzy regulators), SPb., Publishing house of GUAP, 2010 (in Russian).

8. Gostev V. I. Proektirovanie nechetkih logicheskih regulyatorov dlya sistem avtoma-ticheskogo upravleniya (Design of fuzzy logic regulators for automatic control systems), SPb., BHV-Peterburg, 2011 (in Russian).

9. Uskov A. A. Sistemy s nechetkimi modelyami ob"ektov upravleniya (Systems with fuzzy models of control objects), Smolensk, Smolenskij filial "RUK", 2013 (in Russian).

10. Pegat A. Nechetkoe modelirovanie i upravlenie (Fuzzy simulation and control), Moscow, BINOM. Laboratoriya znanij, 2013.

11. Leonenkov A. V. Nechetkoe modelirovanie v srede MATLAB i fuzzyTECH (Fuzzy modeling in MATLAB and fuzzyTECH), SPb., BHV-Peterburg, 2003 (in Russian).

12. Shtovba S. D. Proektirovanie nechetkih sistem sredstvami MATLAB (Design of fuzzy systems by means of MATLAB), Moscow, Goryachaya liniya-Telekom, 2007 (in Russian).

13. Denisenko V. V. Komp’yuternoe upravlenie tekhnologicheskim processom, ehksperi-mentom, oborudovaniem (Computer control by technological process, experiment, equipment), Moscow, Goryachaya liniya-Telekom, 2009 (in Russian).

14. Astrom K. J., Hagglund T. Advanced PID control / ISA (The Instrumentation, System, and Automation Society), 2006.

15. Pan’ko M. A., Arakelyan Eh. K. Osobennosti nechetkih algoritmov regulirovaniya v sravnenii s klassicheskimi (Pecularities of fuzzy control algorithms in comparison with classical ones), Teploehnergetika, 2001, no. 10, pp. 39—42 (in Russian).

16. Shanceva I. P. Fazzi-regulyator temperatury ehlektricheskih pechej soprotivleniya (Fuzzie-regulator of temperature of electric furnace resistance), Vestnik MEHI, 2008, no. 3, pp. 51—56 (in Russian).

17. Mishta P. V., Byzov P. G., Vasil’eva E. V. Nechetkaya logika — sovremennyj put’ razvitiya teorii upravleniya (Fuzzy logic – is modern way of development of control theory), Izvestiya VolgGTU, 2010, no. 1, pp. 139—142 (in Russian).

18. Burakov M. V., Konovalov A. S. Sintez nechetkih logicheskih regulyatorov (Synthesis of fuzzy logic regulators), InformacionnoUpravlyayushchie Sistemy, 2011, no. 1, pp. 22—27 (in Russian).

19. Antipin A. F. O povyshenii bystrodejstviya sistem intellektual’nogo upravleniya na baze nechetkoj logiki (Concerning improving speed of intelligent control systems based on fuzzy logic), Avtomatizaciya, Telemekhanizaciya i Svyaz’ v Neftyanoj Promyshlennosti, 2013, no. 5, pp. 22—26 (in Russian).

20. Vil’danov R. G., Bikmetov A. G., Samoshkin A. I. Modelirovanie avtomaticheskoj sistemy regulirovaniya s fuzzy-regulyatorom (Simulation of automatic regulation system with fuzzy controller), Sovremennye Problemy Nauki i Obrazovaniya, 2014, no. 4, pp. 140—146 (in Russian).

21. Demidova G. L., Kuzin A. Yu., Lukichev D. V. Osobennosti primeneniya nechetkih regulyatorov na primere upravleniya skorost’yu vrashcheniya ehlektrodvigatelya postoyannogo toka (Features of application of fuzzy regulators on the example of DC motor speed control), Nauchno-Tekhnicheskij Vestnik Informacionnyh Tekhnologij, Mekhaniki i Optiki, 2016, vol. 16, no. 5, pp. 872—878 (in Russian).

22. Volobuev M. F., Zamyslov M. A., Mal’cev A. M., Mihajlenko S. B. Matematicheskaya model’ kanala upravleniya vysotoj poleta letatel’nogo apparata s ehlementami nechetkoj logiki i ee sravnenie s klassicheskoj model’yu (Mathematical model of the flight altitude control channel of the aircraft with fuzzy logic elements and its comparison with the classical model), Problemy bezopasnosti poletov, 2017, no. 9, pp. 36—48 (in Russian).

23. Kulikova I. V. Vliyanie vybora algoritmami nechetkogo vyvoda na tochnost’ rabo-ty nechetkogo regulyatora (Influence of selection of fuzzy inference algorithms on the accuracy of the fuzzy controller), International Journal of Advanced Studies, 2017, vol. 7, no. 4—3, pp. 66—75 (in Russian).

24. Zemcov A. F., Gryaznov I. E., Postupaeva S. G. Sravnitel’nyj analiz i issledovanie raboty klassicheskogo PID-regulyatora s "nechetkimi" ego raznovidnostyami (Comparative analysis and study of the classical PID controller with its "fuzzy" varieties), Izvestiya VolgGTU, 2018, no. 2, pp. 63—66 (in Russian).

25. Rotach V. Ya. O fazi-PID-regulyatorah (About phase-PID controllers), Teploehnergetika, 1999, no. 8, pp. 32—36 (in Russian).

26. Rotach V. Ya. Teoriya avtomaticheskogo upravleniya (Theory of automatic control), Moscow, Publishing house of MEHI, 2008 (in Russian).

27. Filimonov A. B., Filimonov N. B. O mnimyh prevoskhodstvah algoritmov nechetkogo regulirovaniya (On the imaginary superiority of fuzzy control algorithms), Problemy Upravleniya i Modelirovaniya v Slozhnyh Sistemah: Trudy HIII Mezhdunar. konf, Samara, Samarskij NC RAN, 2011, pp. 104—109 (in Russian).

28. Filimonov A. B., Filimonov N. B. K voprosu postroeniya nechetkih PID-regulyatorov (To the question of the construction of fuzzy PID controllers), Mekhatronika, avtomatika i robototekhnika, 2018, no. 2, pp. 112—116 (in Russian).

29. Mamdani E. H. Application of Fuzzy Algorithm for Simple Dynamic Plant, Proc. IEEE, 1974, vol. 121, no. 12, pp. 1585—1588.


Review

For citations:


Filimonov A.B., Filimonov N.B. Sertain Problematic Aspects of Fuzzy PID Regulation. Mekhatronika, Avtomatizatsiya, Upravlenie. 2018;19(12):762-769. (In Russ.) https://doi.org/10.17587/mau/19.762-769

Views: 916


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)