Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

The Main Provisions of the Methodology for Assessing the Convergence of the Results of Mathematical Modeling of Continuous Processes of Avionics Devices and Field Experiments

https://doi.org/10.17587/mau.19.680-688

Abstract

The questions of estimation of convergence of the processes received in single flight tests of an aviation complex and at mathematical modeling are considered. This evaluation is performed based on the methods of analysis of variance and means of verification of statistical hypotheses in decision-making on the convergence of the compared processes. For each of the compared processes, the least squares method determines the regression lines. By methods of mathematical statistics the permissible proximity of regression lines of the compared processes is established and the average regression line equivalent to the mathematical expectation of the analyzed statistical processes is determined. With respect to this line, the variance of deviations of the compared statistical processes is determined and their belonging to the General sample of processes is estimated. This suggests that under normal laws of the distribution of measurement errors there is an adequacy of the processes of the mathematical model of the stages of operation of the aviation complex and the observed processes of these stages during flight tests of the aviation complex under study.

About the Authors

V. V. Slatin
State Research Institute of Aviation Systems.
Russian Federation
Moscow.


M. A. Demkin
State Research Institute of Aviation Systems.
Russian Federation

Demkin Mikhail A., Head of Sector.

Moscow,



A. V. Golubkina
State Research Institute of Aviation Systems.
Russian Federation
Moscow.


References

1. Fedosov E. A. ed. Aviacija PVO Rossii nauchno-tehnicheskij progress. Boevye kompleksy i sistemy vchera, segodnja i zavtra (Russian air defense aviation: scientific and technological advance), Moscow, Drofa, 2001, 816 pp. (in Russian).

2. Korsun O. N., Nikolaev S. V. Metodika identifikacii ajerodinamicheskih kojefficientov prodol’nogo dvizhenija samoleta v jekspluatacionnom diapazone uglov ataki (Identification of the Aerodinamic Coefficients of Longitudinal Motion of on Aircraft in the Operational Range of the Attack Angles), Mekhatronika, Avtomatizatsiya, Upravlenie, 2015, vol. 16, no 4, pp. 269—276 (in Russian).

3. Korsun O. N., Nikolaev S. V., Poplavskij B. K. Algoritmy proverki pravil’nosti poletnyh dannyh i ocenivanija nelinejnostej pri identifikacii ajerodinamicheskih kojefficientov samoletov (Algorithms for validation of the flight data and evaluation of the nonlinearities of the aerodynamic coefficients of the aircraft), Mekhatronika, Avtomatizatsiya, Upravlenie, 2017, vol. 18, no 4, pp. 270—277 (in Russian).

4. Mazur V. N., Caturjan K. T. Metody ocenki adekvatnosti matematicheskoj modeli vozmushhennogo dvizhenija samoleta (Methods for assessing the adequacy of the mathematical model of the perturbed motion of the aircraft), Mekhatronika, Avtomatizatsiya, Upravlenie, 2008, no 6, Prilozhenie, pp. 7–10 (in Russian).

5. Fedosov E. A. ed. Sistemy upravlenija vooruzheniem istrebitelej. Osnovy intellekta mnogofunkcional’nogo samoleta (Fighter weapon control systems: basics of multirole aircraft intellect), Moscow, Mashinostroenie, 2005, 400 p. (in Russian).

6. Moir J., Seabridge A. Military Avionics Systems. John Wiley & Sons, Ltd, 2006, 520 р.

7. Stimson G. W., Griffiths H. D., Baker C. J., Adamy D. L. Introduction to Airborne Radar, Scitech Publishing. 2014, 745 р.

8. Jejkhoff P. Osnovy identifikacii sistem upravlenija. Ocenivanie parametrov i sostojanija (System identification parameter and state estimation), Rajbman N. S. ed., Moscow, Mir, 1975, 683 p. (in Russian).

9. Fursov V. A. Adaptivnaja identifikacija po malomu chislu nabljudenij (Adaptive identification by a small number of observations), Informacionnye Tehnologii, Prilozhenie, 2013, no 9, pp. 1—32 (in Russian).

10. Ivanovskij R. I. Teorija verojatnostej i matematicheskaja statistika. Osnovy, prikladnye aspekty s primerami i zadachami v srede MathCad: uchebnoe posobie (Probability theory and mathematical statistics. Fundamentals, practical aspects, with examples and problems in MathCad: a tutorial), SPb., BHV-Peterburg, 2008, 528 pp. (in Russian).

11. Karmanov F. I., Ostrejkovskij V. A. Statisticheskie metody obrabotki jeksperimental’nyh dannyh s ispol’zovaniem paketa MathCad (Statistical methods of experimental data processing using Mathcad package: tutorial), Moscow, Kurs INFRA-M, 2015, 208 pp. (in Russian).

12. Ventcel’ E. S. Teorija verojatnostej: uchebnoe izdanie (Probability theory: educational publication), Moscow, Nauka, 1969, 576 pp. (in Russian).

13. Andronov A. M., Kopytov E. A., Gringlaz L. Ja. Teorija verojatnostej i matematicheskaja statistika (Probability theory and mathematical statistics: textbook for universities), SPb., Piter, 2004, 461 pp. (in Russian).

14. Gmurman V. E. Teorija verojatnostej i matematicheskaja statistika (Probability theory and mathematical statistics: Studies. Manual for universities), Moscow, Jurajt, 2012, 480 pp. (in Russian).

15. Pustyl’nik E. I. Statisticheskie metody analiza i obrabotki nabljudenij (Statistical methods of analysis and processing of observations.), Moscow, Nauka, 1968, 288 pp. (in Russian).


Review

For citations:


Slatin V.V., Demkin M.A., Golubkina A.V. The Main Provisions of the Methodology for Assessing the Convergence of the Results of Mathematical Modeling of Continuous Processes of Avionics Devices and Field Experiments. Mekhatronika, Avtomatizatsiya, Upravlenie. 2018;19(10):680-688. https://doi.org/10.17587/mau.19.680-688

Views: 657


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)