Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Device and Program Model of Pneumatic Mechatronic Complex Control

https://doi.org/10.17587/mau.19.612-617

Abstract

The article deals with the pneumatic mechatronic complex (PMC), which is controlled by an interactive touch panel by a human operator. A pneumo-electric circuit for connecting components of the mechatronic complex is presented. The pneumatic mechatronic complex consists of electrical, electronic, pneumatic, pneumo-electric components and software. A functional map of the technological process of fixing a floating object, moving and storing in a storage tray, which includes 13 steps, is constructed. To control the PMC, a programmable logic controller (PLC) Siemens S7-1200 and a touch panel Siemens HMI KTP 400 Basic are used. The interconnection of PMK components is carried out through the construction of an industrial communication network. The industrial network is implemented using the Ethernet interface. The Ethernet switch Siemens Scalance XB05 combines a PLC, a touch panel and a personal computer into a common network. For each device, you specify the IP address and subnet mask. To implement the stages of the technological process, an experimental view of the operator’s screen was developed. On the touch panel, buttons are displayed so that the human operator can control the PMC in manual mode. Program control PMC is implemented in the Tiaportal v.14 environment using the LAD programming language (Ladder Diagram). The article shows and describes parts of the code that implement: moving up / down the rodless cylinder of the carriage with the grip; retraction and extension of the cylinder with grasping; opening and closing of the grasp; supply and deactivation of air in the nozzle; extension of the cylinder supplying objects to the zone of action of the air stream. An experiment was conducted to reveal the time for performing operations of the technological process of fixing the floating object, moving and storing it in the storage tray. The commit of the execution time occurred separately for each stage and for the complete cycle from the start position to the return of the object to the storage tray. The amount of time for performing individual operations was approximately 17 seconds. The complete cycle man-operator can perform in 22 seconds.

About the Authors

M. V. Bobyr
South-West State University
Russian Federation

D.Sc., Prof.



A. A. Dorodnykh
South-West State University
Russian Federation


A. S. Yakushev
South-West State University
Russian Federation


References

1. Kalyaev I. A., Kayaev A. I., Korovin Yа. S. Principy organizacii i funkcio-nirovaniya bezlyudnogo robotizirovannogo proizvodstva s decentralizovannym dispetcherom, Mekhatronika, Avtomatizatsiya, Upravlenie, 2016, no. 11, pp. 741—749 (in Russian).

2. Babayan P. V., Gavrilov A. N. Ispol’zovanie sistem tekhnicheskogo zreniya pri avtomatizacii proizvodstva gerkonov, Mekhatronika, Avtomatizatsiya, Upravlenie, 2011, no. 6, pp. 15—19 (in Russian).

3. Loshickij P. A., Shekhovcova E. E. Raschet i modelirovanie raboty pro-myshlennogo manipulyatora na silovyh obolochkovyh ehlementah, Mekhatronika, Avtomatizatsiya, Upravlenie, 2015, no. 7, pp. 470—475 (in Russian).

4. Patel J., Patel A., Singh R. Development of PLC based process loop control for bottle washer machine, Procedia Technology, 2014, no. 14, pp. 365—371.

5. Aydin G., Ozan A., Hilmi K. Remote Remote access for education and control of mechatronics systems, Procedia-Social and Behavioral Sciences, 2015, no. 176, pp. 1050—1055.

6. Programmiruemye kontrollery S7-1200, Sistemy Avtomatizacii i Avtomatika, available at: https://www.saa.su/Document/ PLC/Simatic/cpu_S7-1200_2013.pdf.

7. Hacksteiner M., Duer F., Ayatollahi I., Bleicher F. Automatic assessment of machine tool energy efficiency and productivity, Procedia CIRP, 2017, no. 62, pp. 317—322.

8. Al’terman I. Z. Programmiruemye kontrollery Simatic S7: 2-j uroven’ professional’noj podgotovki, Promyshlennaya avtomatizaciya, 2011, 66 p. (in Russian).

9. Olson G., Piani D. Cifrovye sistemy avtomatizacii i upravleniya, SPb., Nevskij dialekt, 2001, 557 p. (in Russian).

10. Berger G. Avtomatizaciya s pomoshch’yu programm Step7 LAD i FBD, Programmiruemye kontrollery Simatic S7-300/S7-400, Siemens, 2001, 605 p. (in Russian).

11. Programmiruemyj kontroller S7-1200 sistemnoe rukovodstvo, Siemens, Germaniya, 2009, 398 p.

12. Al’terman I. Z. Programmirovanie panelej operatora Simatic, Uchebnyj centr "Simatik", 2014, 78 p. (in Russian).

13. Bobyr M. V., Kulabuhov S. A., Yakushev A. S. Avtonomnaya sistema ohla-zhdeniya rezhushchego instrumenta v zadache upravleniya oborudovaniem s CHPU. CHast’ I, Mekhatronika, Avtomatizatsiya, Upravlenie, 2017, vol. 18, no. 7, pp. 558—563 (in Russian).

14. Bobyr M. V., Kulabuhov S. A., Yakushev A. S. Nechetkaya ierarhicheskaya sistema uglovoj orientacii mobil’nogo robota. CHast’ I, Mekhatronika, Avtomatizatsiya, Upravlenie, 2016, vol. 17, no. 7, pp. 458—464 (in Russian).

15. Bobyr M. V., Milostnaya N. A., Kulabuhov S. A. A method of defuzzification based on the approach of areas’ ratio, Applied Soft Computing Journal, 2017, vol. 59, pp. 19—32, DOI: 10.1016/ j.asoc.2017.05.040 (in Russian).

16. Bobyr M. V., Milostnaya N. A., Analysis of the use of soft arithmetic operations in the structure of fuzzy logic inference, Vestnik Komp’iuternykh i Informatsionnykh Tekhnologii, 133 (2015), pp. 7—15, doi: 10.14489/VKIT.2015.07.PP.007-015.

17. Bobyr M. V., Kulabuhov S. A., Milostnaya N. A. Obuchenie nejro-nechetkoj sistemy na osnove metoda raznosti ploshchadej, Iskusstvennyj Intellekt i Prinyatie Reshenij, 2016, no. 4, pp. 15—26 (in Russian).


Review

For citations:


Bobyr M.V., Dorodnykh A.A., Yakushev A.S. Device and Program Model of Pneumatic Mechatronic Complex Control. Mekhatronika, Avtomatizatsiya, Upravlenie. 2018;19(9):612-617. (In Russ.) https://doi.org/10.17587/mau.19.612-617

Views: 571


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)