Force Membranate Elements: Historical Information, Geometrical Mathematical Models, Practical Use (Review)
https://doi.org/10.17587/mau.19.642-657
Abstract
In this paper is given an over view of histor y of creation and development of geometrical mathematical models and use of pneumatic artificial muscles (PAM) and bellows. PAMs and bellows as pneumatic actuators are made of flexible membrane which can inflate. Displacement of these membranate elements depends on inner pressure. Direction of the displacement coincide with elements symmetry axis. Process of displacement involve shell form change. Reviewing actuators can be divided into two types: push-type and pull-type. The direction of displacement depends on length and diameter ration of element. PAMs are related to the pull-type actuators, bellows are related to the push-type. Distinguished tendencies and perspectives of developing pneumatic actuators are based on force membranate elements because of their advantages such as small weight, smoothness on low velocities and high strength. True to date exist big amount of different constructive designs of PAMs and bellows. Review contains such designs as braided, pleated and other designs of PAMs. In this paper are given main and often used approaches of creation static geometrical mathematical models of PAMs and bellows. Suggested mathematical models connect such parameters of PAMs and bellows as developed force, element axial length change, inner pressure change, diameter and material characteristics. For PAMs and bellows control is required to control its length or developed force. There are shown some applications of force membranate elements in different fields, such as biorobotics, medical and industrial applications. In conclusion are given possible approaches to improve discussed geometrical mathematical models of PAMs and bellows.
About the Authors
P. P. ChernusRussian Federation
Saint-Petersburg.
V. T. Sharovatov
Russian Federation
Sharovatov Vladimir T., Doctor of Sciences, Professor of department "Actuating Systems, Mechatronics and robotics".
Saint-Petersburg.
P. P. Chernus
Russian Federation
Saint-Petersburg.
References
1. Marcincin J., Palko A. Negative pressure artificial muscle — An unconventional drive of robotic and handling systems, Transactions of the University of Kosice, pp. 350—354, Riecansky Science Publishing Co, Slovak Republic, 1993.
2. Nickel V., Perry J., Garrett A. Development of useful function in the severely paralyzed hand, Journal of Bone and Joint Surgery, 1963, vol. 45-A, no. 5, pp. 933—952.
3. Noritsugu T., Takaiwa M., Sasaki D. Development of Power Assist Wear using Pneumatic Rubber Artificial Muscles, Proc. of Asia Int. Symposium on Mechatronics, 2008.
4. Vimieiro C., do Nascimento B. G., Nagem D., Pinotti M. Development of a hip orthosis using pneumatic artificial muscles, Technology Meets Surgery International, Sao Paulo, 2005.
5. Knestel M., Hofer E., KleeBarillas S., Rupp R. The Artificial Muscle as an Innovative Actuator in Rehabilitation Robotics, The International Federation of Automatic Control, 2008.
6. Caldwell D., Medrano-Cerda G., Goodwin M. Braided pneumatic actuator control of a multi-jointed manipulator, in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Le Touquet, 1993, pp. 423—428.
7. McMahon T. Muscles, ref lexes, and locomotion, Princeton University Press, 1984.
8. Schulte H. The characteristics of the McKibben Artificial Muscle, The Application of External Power in Prosthetics and Orthotics, Lake Arrowhead, 1961, pp. 94—115.
9. Klute G. K., Hannaford B. Modeling Pneumatic McKibben Artificial Muscle Actuators: Approaches and Experimental Results, ASME Journal of Dynamic Systems, Measurements, and Control, 1999.
10. Klute G. K., Hannaford B. Accounting for elastic energy storage in McKibben artificial muscle actuators, ASME Journal of Dynamic Systems, Measurement and Control, 2000, pp. 386—388.
11. Yarlott J. Fluid actuator, US Patent No. 3 645 173, 1972.
12. Caldwell D., Tsagarakis N. Biomimetic actuators in prosthetic and rehabilitation applications, 2002, Technology and Health Care, pp. 107—120.
13. Kukolj M. Axially contractible actuator, US PatentNo. 4 733 603, 1988.
14. Immega G. Tension actuator load suspension system, US Patent No. 826 206, 1989.
15. Paynter H. Hyperboloid of revolution f luid-driven tension actuators and methods of making, US Patent No. 4 721 030, 1988.
16. Gavrilovic M., Maric M. Positional servo-mechanism activated by artificial muscles, Medical and Biological Engineering, 1969, vol. 7, pp. 77—82.
17. Inoue K. Rubbertuators and applications for robotics, Proceedings of the 4th International Symposium on Robotics Research, New York, 1987, pp. 57—63.
18. Hannaford B., Winters J., Chou C., Marbot P. The anthroform biorobotic arm: a system for the study of spinal circuits, Annals of Biomedical Engineering, 1995, vol. 23, pp. 399—408.
19. Caldwell D., Medrano-Cerda G., Goodwin M. Control of Pneumatic Muscle Actuators, IEEE Control Systems Magazine, 1995, vol. 15, no. 1, pp. 40—48.
20. Daerden F., Lefeber D. The concept and design of pleated pneymatic artificial muscles, International Journal of Fluid Power, 2001, pp. 41—50.
21. Verrelst B., Daerden F., Lefeber D., Van Ham R., Fabri T.Introducing Pleated Pneumatic Artificial Muscles for the actuation of legged robots: a one-dimensional set-up, Proceedings of the 3rdInternational Conference on Climbing and Walking Robots, Madrid, 2000, pp. 583—590.
22. Caldwell D., Razak A., Goodwin M. Braided Pneumatic Muscle Actuators, Proceedings of the IFAC Conference on Intelligent Autonomous Vehicles, Southampton, 1993, pp. 507—512.
23. Winters J. Braided Artificial Muscles: mechanical properties and future uses in prosthetics/orthotics, Proceedings of the RESNA 13th Annual Conference, Washington DC, 1995, pp. 173—174.
24. Davis S., Tsagarakis N., Canderle J., C. D. G. Enhanced modeling and performance in braided pneumatic muscle actuators, International Journal of Robotics Research, 2003, vol. 22, no. 3.
25. Kingsley D., Quinn R. D. Fatigue life and frequency response of braided pneumatic actuators, IEEE Robotics and Automation Conference, Washington, 2002.
26. Colbrunn R., Nelson G., Quinn R. Modeling of Braided Pneumatic Actuators for Robotic Control, Proceedings of IROS, 2001, vol. 4, pp. 1964—1970.
27. Daerden F. Conception and Realization of Pleated Pneumatic Artificial Muscles and their Use as Compliant Actuation Elements, PhD thesis. Vrije Universiteit Brussel, Belgium, 1999.
28. Casi D. V. Development of the production process of PPAM, PhD Thesis (Universidad Publica de Navarra), 2009.
29. Paynter H. M. Low-cost pneumatic arthrobots powered by tug—and—twist polymer actuators, Japan/USA Symposium on Flexible Automation, 1996, vol. 1.
30. Noritsugu T., Takaiwa M., Sasaki D. Development of Power Assist Wear using Pneumatic Rubber Artificial Muscles, Proc. of Asia Int. Symposium on Mechatronics, 2008.
31. Vimieiro C., do Nascimento B. G., Nagem D., Pinotti M. Development of a hip orthosis using pneumatic artificial muscles, Technology Meets Surgery International, Sao Paulo, 2005.
32. Knestel M., Hofer E., KleeBarillas S., Rupp R. The Artificial Muscle as an Innovative Actuator in Rehabilitation Robotics, The International Federation of Automatic Control, 2008.
33. Van Damme M., Van Ham R., Vanderborght B., Daer den F., Lefeber D. Design of a soft 2-DOF planar pneumatic manipulator, International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, 2005, pp. 559—566.
34. Kingsley D. A., Quinn R. D., Ritzmann R. E. A cockroach inspired robot with artificial muscles, International Symposium on Adaptive Motion of Animals and Machines (AMAM), Kyoto, Japan, 2003, pp. 559—566.
35. Scarfe P., Lindsay E. Air muscles actuated low cost humanoid hand, Int. J. Advanced Robotic Systems, pp. 139—146, 2006.
36. Daerden F., Lefeber D. Pneumatic artificial muscles: actuators for robotics and automation, European journal of Mechanical and Environmental Engineering, 2000, vol. 47, pp. 10—21.
37. WebsiteFesto, available at: https://www.festo.com/cat/ru_ru/data/doc_ru/PDF/RU/MAS_RU.PDF
38. Baldwin H. A. Realizable models of muscle function, Proceedings of the First Rock Biomechanics Symposium,pp. 139—148, New York, 1969.
39. Vodjanik G., Vodjanik A., Zibizov F. Mehanicheskaya myshtca(Mechanical muscle), useful model patent № 7156, 15.09.1997.
40. Lipatov A., Marti A., Sharovatov V. Issledovanie statiki i dinamiki obolochkovogo gidro-pnevmodvinatelja(Static and dynamic research of membranate hydro-pneumo-actuator), Izvestiya Vysshikh Uchebnykh Zavedeniy. Priborostroenie,2002, vol. 4, pp. 36—49.
41. Chernus P., Sharovatov V. Pazpabotka upposhhennyh matematicheskih modelej silovoj chasti silovyh obolochkovyh besshtokovyh pnevmocilindrov(Development of simplified mathematical models of force part of forced membranate rod less pneumatic cylinders), XXXXII Allrussia Symposium, 2012, vol. 3, pp. 69—80.
42. Sharovatov V., Chernus P. Matematicheskaja model’ silovoj chasti obolochkovogo pnevmocilindpa odnostoponnego dejstvija tolkajushhego tipa(Mathematical model of force part of one-way acting push type membranate pneumatic cylinder), Mekhatronica, Avtomatizatsiya, Upravlenie, 2014, vol. 9, pp. 30—36.
43. Chernus P., Sharovatov V.Dynamic Mathematical Model of Two-way Bellow Actuator, Procedia Engineering, 2015, vol. 100, pp. 1040—1045.
44. Chernus Pavel, Chernus Petr, Sharovatov V. Modelling of two-way bellow actuator positioning, 26th DAAAM international symposium on intelligent manufacturing and automation 2016, Austria, Wien, pp. 620—625.
45. Chernus Pavel, Chernus Petr, Sharovatov V. Mathematical model of proportional spool valve, 26th DAAAM international symposium on intelligent manufacturing and automation 2016, Austria, Wien, pp. 626—632.
46. Sharovatov V., Loshizkiy P. Matematicheskaja model’ silovogo besshtokovogo pnevmocilindra odnostoronnego dejstvija obolochkovogo tipa(Mathematical model of membranate forced rodless one-way pneumatic cilynder), Mekhatronica, Avtomatizatsiya, Upravlenie, 2011, vol. 2, pp. 30—36.
47. Sharovatov V., Loshizkiy P. Matematicheskaja model’ silovogo obolochkovogo besshtokovogo pnevmocilindpa odnostoronnego dejstvija s vozvratnoj pruzhinoj (Mathematical model of membranate forced rodless one-way pneumatic cilynder with spring), Mekhatronica, Avtomatizatsiya, Upravlenie,2012, vol. 11, pp. 45—49.
48. Loshizkiy P. Razrabotka matematicheskih modelej obolochkovyh besshtokovyh pnevmocilindrov s uchetom dinamiki szhatogo gaza i ih primenenie v sistemah privodov(Development of mathematical model of membranate rodless pneumatic cilynder considering compressed gas dynamic): PhD thesis in Engineering sciences: 05.02.02, Saint-Petersburg. 2011.
49. Chou C., Hannaford B. Measurement and modeling of McKibben pneumatic artificial muscles, IEEE Transactions on robotics and automation,1996, vol. 12, no. 1, pp. 90—102.
50. Tondu B., Lopez P. Modeling and control of McKibben artificial muscle robot actuators, IEEE Control Systems Magazine, 2000. vol. 20, no. 2, pp. 15—38.
51. Daerden F., Verrelst B., Lefeber D., Kool P. Controlling motion and compliance with Folded Pneumatic Artificial Muscles, Proceedings of the Second International Conference on Climbing and Walking Robots, Portsmouth, 1999, pp. 667—677.
52. Zhang J., Yang C., Chen Y., Zhang Y., Dong Y. Modeling and control of a curved pneumatic muscle actuator for wearable elbow exoskeleton, Mechatronics, 2008, pp. 448—457.
53. Chou C., Hannaford B. Static and dynamic characteristics of McKibben pneumatic artificial muscles, Proceedings IEEE International Conference on Robotics and Automation, 1994,pp. 281—286.
54. Doumit M. M., Fahim A. Analytical Modeling and Experimental Validation of the Braided Pneumatic Muscle, IEEE Transactions on Robotics, 2009, vol. 25, no. 6, pp. 1282—1291.
55. Andrikopoulos G., Nikolakopoulos G., Manesis S. A survey on applications of pneumatic artificial muscles, Proceedings 19th Mediterranean Conference on Control and Automation, 2011, pp. 1439—1446.
56. Berns K., Albiez J., Kepplin V., Hillenbrand C. Airbug—Incectlike machine actuated by f luidic muscle, CLAWAR 2001-Climbing and Walking Robots and the Support Technologies for Mobile Machines, 2001.
57. Verrelst B., Ham R., Vanderborght B., Daerden F., Lefeber D. The pneumatic biped "lucy" actuated with pleated pneumatic artificial muscles, Autonomous Robots, 2005, vol. 18,pp. 201—213.
58. Boblan and Schulz A. A Humanoid Muscle Robot Torso with Biologically Inspired Construction, ISR 2010, 41st International Symposium on Robotics and ROBOTIK 2010, 6th German Conference on Robotics, Munich, Germany, 2010.
59. Prior S., White A. Measurements and simulation of a pneumatic muscle actuator for a rehabilitation robot, Simulation Practice Theory, 1995, vol. 3, no. 2, pp. 81—117.
60. Misuraca J., Mavroidis C. Limb Human Muscle Enhancer, Proceedings of IMECE01: International Mechanical Engineering Conference and Exposition, 2001.
61. Tsagarakis N., Caldwell D. Biomimetic Actuators in Prosthetic and Rehabilitation Applications, Technology and Health Care Journal, 2002, vol. 10, no. 2, pp. 107—120.
62. Wongsiri S., Laksanacharoen S. Design and construction of an artificial limb driven by artificial muscles for amputees, International Conference on Energy and the Environment, Songkla, 2003.
63. Laksanacharoen S. Artificial muscle contsruction using natural rubber latex in Thailand, The 3rd Thailand and Material Science and Technology Conference, Bangkok, 2004.
64. Kobayashi H., Hiramatsu K. Development of muscle suit for upper limb, Proceedings of the 2004 IEEE, International Conference on Robotics and Automation, 2004, vol. 2480, no. 5, Tokyo.
65. He J., Koeneman E., Schultz R., Huang H., Wanberg J., Herring D., Sugar T., Herman R., Koeneman J. Design of a Robotic Upper Extremity Repetitive Therapy Device, Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, Chicago, IL, USA, 2005, pp. 95—98.
66. Balasubramanian S., Wei R., Perez M., Shepard B., Koeneman E., Koeneman J., He J. RUPERT. An exoskeleton robot for assisting rehabilitation of arm functions, Virtual Rehabilitation 2008, pp. 163—167, 2008.
67. Vimieiro C., B. G. do N., Nagem D., Pinotti M. Development of a Hip Orthosis using Pneumatic Artificial Muscles, Proceedings of TMSI (Technology meets Surgery International) 2005, Sao Paolo, Spain, 2005.68. Ferris D., Czerniecki J., Hannaford B. An ankle foot orthosis powered by artificial pneumatic muscles, J. Appl. Biomec, 2005, vol. 21, pp. 189—197.
68. Ferris D., Gordon K., Sawicki G., Peethambaran A. An improved powered ankle-foot orthosis using proportional myoelectric control, Gait and Posture, 2005, vol. 23, pp. 425—428.
69. Gordon K., Sawicki G., Ferris D. Mechanical Performance of Artificial Pneumatic Muscles to Power an Ankle-Foot Orthosis, Journal of Biomechanics, 2006, vol. 39, pp. 1832—1841.
70. Tsagarakis N., Caldwell D. Development and control of a physiotherapy and training exercise facility for the upper limb using soft actuators, Proceedings of IEEE International Conference on Advanced Robotics, Coimbra, Portugal, 2003, pp. 1092—1097.
71. Tsagarakis N., Caldwell D. A Compliant exoskeleton for multi-planar upper limb physiotherapy and training, International Journal of the Robotics Society of Japan, Advanced Robotics, 2007.
72. Caldwell D., Tsagarakis N., Kousidou S., Costa N., Sarakoglou I. "Soft" Exoskeletons for Upper and Lower Body Rehabilitation — Design, Control and Testing, International Journal of Humanoid Robotics, 2007, vol. 4, no. 3, pp. 549—573.
73. Caldwell D., Medrano-Cerda G., Goodwin M. Braided pneumatic actuator control of a multi-jointed manipulator, Systems, Man and Cybernetics, 1993, vol. 1, pp. 423—428.
74. Pomiers P. Modular robot arm based on pneumatic artificial rubber muscles (PARM), Proceedings of CLAWAR 2003, Catania, Italy, 2003.
75. Kawashima K., Sasaki T., Miyata T., Nakamura N., Sekiguchi M., Kagawa T. Development of robot using pneumatic artificial rubber muscles to operate construction machinery, J. Robotics and Mechatronics, 2004, vol. 16, no. 1, pp. 8—15.
76. Damme M. V., Ham R. V., Vanderborght B., Daerden F., Lefeber D. Design of a "soft" 2-DOF planar pneumatic manipulator, Proceedings of CLAWAR 2005: 8th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, 2005, pp. 559—566.
77. Damme M. V., Daerden F., Lefeber D. A pneumatic manipulator used in direct contact with an operator, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 2005, pp. 4505—4510.
78. Caldwell D. G., Tsagarakis N. G., Medrano-Cerda G. A., Schofield J., Brown S. Development of a Pneumatic Muscle Actuator driven Manipulator Rig for Nuclear Waste Retrieval Operations, Proceedings of the 1999 IEEE International Conference on Robotics & Automation Detroit, Michigan, 05.1999.
79. Wedler, Denkena D. New Compliant Mc-Kibben Actuator Driven by Pneumatic Actuators as a Hexapod Platform in Robotic Applications, 10th Workshop on Advanced Space Technologies for Robotics and Automation, ASTRA 2008, Noordwijk, The Netherlands, 2008.
80. Radojicic J., Surdilovic D., Schreck G. Modular Hybrid Robots for Safe Human-Robot Interaction, World Academy of Science, Engineering and Technology (WCSAT 2009), Bangkok, Thailand, 2009.
81. Ichim, Pneumatic Applied To Logistic Systems, Annals of the Oradea University, Fascicle of Management and Technological Engineering, 2007, vol. 6, no. 16, pp. 2282—2289.
82. Brown G., Haggard R., Almassy R., Benney R., Dellicker S. The Affordable Guided Airdrop System (AGAS), AIAA paper99-1742 presented at the 15th CEAS/AIAA Aerodynamic Decelerator Systems Technology Conference, 1999.
83. Yerkes N., Wereley N. Pneumatic Artificial Muscle Activation for Trailing Edge Flaps, AIAA paper 2008-1418, 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2008.
84. Pohl M. A Motion Seat Using Pneumatic Membran Actuators in a Hexapod System Structur, 6th International Workshop on Research and Education in Mechatronics, REM 2005, Annecy, France, 2005.
85. Chernus P., Golovkin S. Primenenie silovyh obolochkovyh jelementov v vibroispytatel’nyh stendah(Approach of forced membranate elements in vibration stands), Voennaja radiojelektronika: opyt ispol’zovanija i problemy, podgotovka specialistov: 24-aja Mezhvuzovskaja nauchno-tehnicheskaja konferencija,VMPI, 2013,pp. 251—262.
86. Sharovatov V., Lastochkin A., Chernus P. Ustrojstvo zagrazhdeniya(Barrier arrangement), useful model patent № 127027 from 20.06.2012, published vol. 11, 20.04.2013.
87. Sharovatov V., Lastochkin A., Chernus P., Yakovenko N.Ustrojstvo zapreshhenija proezda protivotarannogo tipa (Barrier arrangement forced type), useful model patent № 141880 from 26.07.2013, published vol. 17, 20.06.2014.
88. Sharovatov V., Lastochkin A., Chernus P. Ustrojstvo zapreshhenija proezda protivotarannogo tipa (Barrier arrangement forced type), Pat. № 2532675 from 21.11.2012, published vol. 15, 27.05.2014.
89. Sharovatov V., Lastochkin A., Chernus P, Yakovenko N. Protivotarannoe ustrojstvo zapreshhenija proezda s nakladkoj(Barrier arrangement with shield), Pat. № 2538738 from 16.07.2013, published vol. 1, 10.01.2015.
Review
For citations:
Chernus P.P., Sharovatov V.T., Chernus P.P. Force Membranate Elements: Historical Information, Geometrical Mathematical Models, Practical Use (Review). Mekhatronika, Avtomatizatsiya, Upravlenie. 2018;19(10):642-657. (In Russ.) https://doi.org/10.17587/mau.19.642-657