Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

UAVs Group Control Based on the Relative State Space Method

Abstract

In this paper, the problem of fixed-wing unmanned aerial vehicles (UAVs) group control was solved using the relative state space method. To achieve this goal the authors created a flight dynamic model of a fixed-wing UAV. Then it was linearized using MATLAB built-in routine and the standard PID autopilot was synthesized. The control inputs for the UAV's inverse kinematic model were calculated based on relative state space method, which is decentralized control of the multi-agent system, fault-tolerant in the sense that the failure of individual agents does not lead either to the failure of the entire system or to the inability to further build and maintain the formation. Each agent has autonomy, i.e. the ability to control part of the system's global state. This method is a bio-inspired algorithm based on the model of living organisms' motor neurons network. In comparison with the "leader-follower" method, the relative state space approach involves the construction of a control hypersurface in the relative state space instead of just following "leader" commands. In addition, this method is resistant to atmospheric disturbances in comparison with virtual structure approach and it has a low computational complexity. Initially the relative state space method was developed only for linear control objects without taking into account their dynamics. Therefore, it was modified by the authors to be applicable to nonlinear control objects (for example, fixed-wing UAVs). The math modeling in MATLAB/Simulink shows successful solution of the problem. Further research will focus on optimization of the formation building time, considering the vehicles collision avoidance and creating path-following algorithms based on the above method.

About the Authors

R. A. Munasypov
Ufa State Aviation Technical University
Russian Federation


T. Z. Muslimov
Ufa State Aviation Technical University
Russian Federation


References

1. Sundaram B., Palaniswami M., Reddy S., Sinickas M. Radar localization with multiple unmanned aerial vehicles using support vector regression // Intelligent sensing and information processing. 2005. P. 232-237.

2. Chandra R. S., Breheny S. H., D'Andrea R. Antenna array synthesis with clusters of unmanned aerial vehicles // Auto-matica. 2008. Vol. 44. P. 1976-1984.

3. Garza J., Panduro M. A., Reyna A., Romero G., del Rio C. Design of UAVs-based 3D antenna arrays for a maximum performance in terms of directivity and SLL // International Journal of Antennas and Propagation. 2016.

4. Coopmans C., Stark B., Jensen A., Chen Y. Q., McKee M. Cyber-physical systems enabled by small unmanned aerial vehicles. In: K. P. Valavanis, G. J. Vachtsevanos (Eds.), Handbook of unmanned aerial vehicles. Dordrecht; Heidelberg; New York; London: Springer, 2015, P. 2835-2860.

5. Wilson D. B., Goktogan A. H., Sukkarieh S. A vision based relative navigation framework for formation flight // IEEE International conference on robotics and automation (ICRA). 2015. P. 4988-4995.

6. Binetti P., Ariyur K. B., Krstic M., Bernelli F. Formation flight optimization using extremum seeking feedback // Journal of guidance, control, and dynamics. 2003. Vol. 26 (1). P. 132-142.

7. Зенкевич С. Л., Галустян Н. К. Децентрализованное управление группой квадрокоптеров // Мехатроника, автоматизация, управление. 2016. № 11. C. 774-782.

8. Ivanov D., Kaliaev I., Kapustjan S. Formation task in a group of quadrotors // Robot Intelligence Technology and Applications 3. Springer International Publishing, 2015. P. 183-191.

9. Paul T., Krogstad T. R., Gravdahl J. T. Modelling of UAV formation flight using 3D potential field // Simulation Modelling Practice and Theory. 2008. Vol. 16 (9). P. 1453-1462.

10. Park C., Cho N., Lee K., Kim Y. Formation flight of multiple UAVs using onboard information sharing // Sensors. 2015. Vol. 15. P. 17397-17419.

11. Beard R. W., Lawton J., Hadaegh F. Y. A coordination architecture for formation control // IEEE transactions on control systems technology. 2001. Vol. 9 (6). P. 777-790.

12. Гайдук А. Р. Управление группой БЛА с ограничением на управление и переменные состояния // Мехатроника, автоматизация, управление. 2012. № 7. C. 52-57.

13. Beard R. W., McLain T. W. Small unmanned aircraft: theory and practice. Princeton and Oxford: Princeton University Press, 2012.

14. Yuasa H., Ito M. Coordination of many oscillators and generation of locomotory patterns // Biological Cybernetics. 1990. Vol. 63 (3). P. 177-184.

15. Yamaguchi H., Arai T. Distributed and autonomous control method for generating shape of multiple mobile robot group // IEEE/RSJ/GI International conference on intelligent robots and systems IROS'94. 1994. Vol. 2. P. 800-807.


Review

For citations:


Munasypov R.A., Muslimov T.Z. UAVs Group Control Based on the Relative State Space Method. Mekhatronika, Avtomatizatsiya, Upravlenie. 2018;19(2):120-125. (In Russ.)

Views: 1128


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)