Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

An Evacuation of a Cosmonaut in a Spacesuit During Extravehicular Activity on the Lunar Surface with Assistance of Rescue Robots

https://doi.org/10.17587/mau.18.734-739

Abstract

Today, in technologically advanced countries there are a number of scientific and technical projects to create robotic systems (RS) in various fields of medicine. The additional efforts are wanted for their practical introduction in the extreme environment, in particular, for the rescue of persons of hazardous occupations, which are most at risk when performing their professional activities. In future lunar missions, the particular attention will be necessary for assistance a crew during extravehicular activity (EVA) on the moon's surface. EVA is one of the most important types of flight's operations and requires strict fulfilling the safety requirements, when fulfilling rescue operations in emergency evacuation with using of Autonomous Mobile Robots (AMR). To select potentially suitable solutions to adapt existing land-based rescue robots to the conditions of human exploration of the Moon, it is necessary to turn an attention to the a couple of important characteristics, such as: the weight and size, the load capacity, resistance to overturning when carrying loads comparable in mass with the mass of the robot, off-road capability across rough terrain with various densities of soil, the natural "Human Robot Interaction" on base of multimodal interfaces for remote robot control, and others. The paper gives the general representation of the problem situations on the lunar surface, when a crew in autonomy conditions has great difficulties, that are connected with the rescue and evacuation of a cosmonaut during EVA into the Lunar Lander in case of crashing the spacesuit's life support system and/or the loss of performance by a cosmonaut.

About the Authors

A. I. Motienko
St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences (SPIIRAS)
Russian Federation


A. L. Ronzhin
St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences (SPIIRAS)
Russian Federation


A. A. Altunin
State Organization "Gagarin Research&Test Cosmonaut Training Center"
Russian Federation


B. I. Kryuchkov
State Organization "Gagarin Research&Test Cosmonaut Training Center"
Russian Federation


V. M. Usov
State Organization "Gagarin Research&Test Cosmonaut Training Center"
Russian Federation


References

1. Крючков Б. И., Усов В. М., Карпов А. А. Онтологический подход к построению интерактивной виртуальной среды для визуального представления планируемых действий при диалоговом управлении роботом-помощником космонавта на МКС // Матер. VI междунар. науч.-техн. конф. "Открытые семантические технологии проектирования интеллектуальных систем" (OSTIS-2016). Минск: БГУИР, 2016. С. 477-482.

2. Крючков Б. И., Михайлюк М. В., Усов В. М. Технологии моделирования для эргономического проектирования системы "космонавт - манипуляционный робот - рабочая среда" // Матер. конф. "Управление в морских и аэрокосмических системах" (УМАС-2014). СПб.: ОАО "Концерн "ЦНИИ "Электроприбор", 2014. С. 367-377.

3. Мотиенко А. И., Ронжин А. Л., Павлюк Н. А. Современные разработки аварийно-спасательных роботов: возможности и принципы их применения // Научный вестник НГТУ. 2015. Т. 60, № 3. С. 147-165.

4. Haynes G. C. et al. Developing a Robust Disaster Response Robot: CHIMP and the Robotics Challenge // Journal of Field Robotics. 2017. V. 34, N. 2. P. 281-304.

5. Kuindersma S. et al. Optimization-based locomotion planning, estimation, and control design for the Atlas humanoid robot // Autonomous Robots. 2016. V. 40, N. 3. P. 429-455.

6. Liu J., Zhang X., Hao G. Survey on research and development of reconfigurable modular robots // Advances in Mechanical Engineering. 2016. V. 8, N. 8. P. 1-21. DOI: 10.1177/ 1687814016659597.

7. Marques M. M. et al. Use of multi-domain robots in search and rescue operations - Contributions of the ICARUS team to the euRathlon 2015 challenge // OCEANS 2016-Shanghai. IEEE. 2016. P. 1-7.

8. Motienko A. I., Ronzhin A. L., Basov O. O., Zelezny M. Modeling of Injured Position During Transportation Based on Bayesian Belief Networks // Proc. of the First International Scientific Conference "Intelligent Information Technologies for Industry" (IITI'16). 2016. P. 81-88.

9. Murphy R. R. et al. Search and rescue robotics // Springer Handbook of Robotics. 2008. P. 1151-1173.

10. NASA Analog Mission (NEEMO). URL: http://www.lpi. usra.edu/lunar/strategies/NASA-Analog-Missions-NP-2011-06-395.pdf (дата обращения 02.05.2017).

11. Theobald D., Allen T. Apparatus with hydraulic power module. U. S. Patent No. 9387895. 2016. URL: https://www.google.com/ patents/US9387895 (дата обращения 21.02.2017).

12. Theobald D. Mobile reconfigurable robot. U. S. Patent No. 8106616. 2012. URL: http://www.google.com/patents/US8106616 (дата обращения 21.02.2017).

13. Walker I. D., Choset H., Chirikjian G. S. Snake-Like and Continuum Robots // Springer Handbook of Robotics. 2016. P. 481-498.

14. Zhang Y. et al. Motion planning and control of ladder climbing on DRC-Hubo for DARPA Robotics Challenge // IEEE International Conference on Robotics and Automation (ICRA 2014). 2014. P. 2086.

15. Zucker M. et al. A General-purpose System for Teleoperation of the DRC-HUBO Humanoid Robot // Journal of Field Robotics. 2015. V. 32, N. 3. P. 336-351.


Review

For citations:


Motienko A.I., Ronzhin A.L., Altunin A.A., Kryuchkov B.I., Usov V.M. An Evacuation of a Cosmonaut in a Spacesuit During Extravehicular Activity on the Lunar Surface with Assistance of Rescue Robots. Mekhatronika, Avtomatizatsiya, Upravlenie. 2017;18(11):734-739. (In Russ.) https://doi.org/10.17587/mau.18.734-739

Views: 439


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)