Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Features of Pattern Recognition Methods for the Turn Control System of Mobile Robot

Abstract

The paper considers the problem of designing the automatic control system of robot based on computer vision. The paper contains the problem formulation of designing the computer vision system to control mobile robot and describes restrictions and basic requirements for control system. The choice of the operating system for mobile robot is described. The paper also contains overview and comparison of recognition methods of the specified object in the image using modern program tools and considering restrictions of mobile computing platforms. The following methods have been analyzed: detection using a marker, pattern matching, image detection and contour matching, feature detections, object classification, method of statistical image analysis, application of artificial neural networks. The paper describes possible ways to implement these methods using OpenCV library. Experiments with OpenCV implementations have been made, and also main advantages and disadvantages of compared methods have been determined. As the result of comparison the method of image segmentation and contour matching has been chosen to be implemented in control system prototype. The paper also describes the implemented prototype of the mobile robot angular velocity control system, which is based on pattern recognition system. The implemented system has been tested in a robotic simulator Gazebo. Research of possibility of distance measurement to a recognized object, as well as research of the effectiveness of different methods combinations can be further directions of development of this work.

About the Authors

T. M. Volosatova
Bauman Moscow State Technical University
Russian Federation


A. V. Kozov
Bauman Moscow State Technical University
Russian Federation


References

1. Буняков В. А., Юревич Е. И. Техническое зрение в робототехнике. СПб.: Астерион, 2008. 67 с.

2. Визильтер Ю. В., Желтов С. Ю., Бондаренко А. В., Ососков М. В., Моржин А. В. Обработка и анализ изображений в задачах машинного зрения. М.: Физматкнига, 2010. 672 с.

3. Mahtani A., Sanchez L., Fernandez E. Effective Robotics Programming with ROS. - Packt Publishing, 2016. 468 с.

4. Bradski G., Kaehler A. Learning OpenCV: Computer vision with the OpenCV library. - O'Reilly Media, Inc., 2008.

5. Гудаев О. А. Распознавание маркеров расширенной реальности ARGET робототехнической системой // Известия Южного федерального университета. Технические науки. 2006. Т. 71. № 16.

6. OpenCV 2.4.13.1 documentation - Object Detection, электронный ресурс http://docs.opencv.org/2.4/modules/ imgproc/doc/object_detection.html (дата обращения 31.01.2017).

7. Arbelaez P., Maire M., Fowlkes C., Malik J. Contour detection and hierarchical image segmentation // IEEE transactions on pattern analysis and machine intelligence. 2011. Т. 33. N 5. С. 898-916.

8. OpenCV 2.4.13.1 documentation - Structural Analysis and Shape Descriptors, электронный ресурс http://docs.opencv. org/2.4/modules/imgproc/doc/structural_analysis_and_shape_ descriptors.html (дата обращения 31.01.2017).

9. Hu M. K. Visual pattern recognition by moment invariants // IRE transactions on information theory. 1962. Т. 8. N. 2. С. 179-187.

10. Lowe D. G. Object recognition from local scale-invariant features // Computer vision, 1999. The proceedings of the seventh IEEE international conference on. - IEEE, 1999. Т. 2. С. 1150-1157.

11. OpenCV 2.4.13.1 documentation - features2d. 2D Features Framework, электронный ресурс http://docs.opencv.org/2.4/modules/features2d/doc/features2d.html (дата обращения 31.01.2017).

12. Viola P., Jones M. Rapid object detection using a boosted cascade of simple features // Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on. IEEE, 2001. Т. 1. С. I-511-I-518.

13. OpenCV 2.4.13.1 documentation - Cascade Classification, электронный ресурс http://docs.opencv.org/2.4/modules/objde-tect/doc/cascade_classification.html (дата обращения 31.01.2017).

14. Comparison of object detection methods, электронный ресурс http://github.com/vvozokk/object-detecting (дата обращения 31.01.2017).

15. Benavidez P., Jamshidi M. Mobile robot navigation and target tracking system // System of Systems Engineering (SoSE), 2011 6th International Conference on. IEEE, 2011. С. 299-304.


Review

For citations:


Volosatova T.M., Kozov A.V. Features of Pattern Recognition Methods for the Turn Control System of Mobile Robot. Mekhatronika, Avtomatizatsiya, Upravlenie. 2018;19(2):104-110. (In Russ.)

Views: 622


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)