Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Statistical Identification of the Linear Dynamic Systems with the Use of the Sign-Function Analog-Stochastic Quantization of the Input and Output Signals

https://doi.org/10.17587/mau.18.604-611

Abstract

The article describes a new approach to solving of the problem of the statistical identification of the impulse response function with the auto- and cross-correlation functions of a linear dynamic system in a digital form. This approach is based on the use of the sign-function analog-stochastic quantization as a primary analog-to-digital conversion of the input and output of the considered system. The basis of the sign-function stochastic quantization is the use of the random auxiliary signals, which perform the function of a threshold stochastic quantization. Sign-function analog-stochastic quantization allows a coarse binary quantization without a bias and regardless of the statistical properties of the investigated random signals. The binary representation of the input and output signals of the system made possible an analytical calculation of the operators of integration in the development of the digital algorithms for estimation of the impulse response functions. The main result of the use of the sign-function analog-stochastic quantization is the transition from processing of multi-bit samples of the input and output signals to processing of the integer values of the time intervals defined by the change of the sign of the quantization result. This improves the data processing in the identification system. The final algorithms obtained for the calculation of the digital samples of the impulse response function does not require preliminary estimates of a direct calculation of the auto- and cross-correlation functions. They can be used for an online identification in real-time. A practical application of these algorithms improves the performance of the digital statistical processing of the input and output signals of the system. A brief account of the algorithmic diagram is presented. It shows the sequence of the basic instructions to be performed for calculation of the samples of the impulse response function

About the Authors

V. N. Yakimov
Samara State Technical University
Russian Federation


V. I. Batyschev
Samara State Technical University
Russian Federation


A. V. Mashkov
Samara State Technical University
Russian Federation


References

1. Алексеев А. А., Кораблев Ю. А., Шестопалов М. Ю. Идентификация и диагностика систем. М.: Издательский центр "Академия", 2009. 352 с.

2. Методы классической и современной теории автоматического управления. Т. 1: Математические модели, динамические характеристики и анализ систем автоматического управления / Под ред. К. А. Пупкова, Н. Д. Егупова. М.: Издательство МГТУ им. Н. Э. Баумана, 2004. 656 с.

3. Методы классической и современной теории автоматического управления. Т. 2: Статистическая динамика и идентификация систем автоматического управления / Под ред. К. А. Пупкова, Н. Д. Егупова. М.: Издательство МГТУ им. Н. Э. Баумана, 2004. 640 с.

4. Ljung L. System Identification: Theory for the User (2nd Edition). Prentice Hall PTR, 1999. 609 p.

5. Isermann R., Mfinchhof M. Identification of Dynamic Systems. An Introduction with Applications. Springer-Verlag Berlin Heidelberg, 2011. 705.

6. Wang L. Y., Zhao W. X. System identification: New paradigms, challenges, and opportunities // Acta Automatica Sinica. 2013. V. 39, N 7. P. 933-942.

7. He Q., Wang L. Y., Yin G. G. System identification using regular and quantized observations: Applications of large deviations principles. Springer New York, 2013. 95 p.

8. Wang L. Y., Zhang J. F., Yin G. G. System identification using binary sensors // IEEE Transactions on automatic control. 2003. Vol. 48, N. 11. P. 1892-1907.

9. Casini M., Garulli A., Vicino A. Input design in worst-case system identification using binary sensors // IEEE Transactions on automatic control. 2011. Vol. 56, N. 5. P. 1186-1191.

10. Guoa J., Zhao Y. Recursive projection algorithm on FIR system identification with binary-valued observations // Automatica. 2013. Vol. 49, N. 11. P. 3396-3401.

11. Kan S., Yin G. G., Wang L. Y. Parameter estimation in systems with binary-valued observations and structural uncertainties // International journal of control. 2014. Vol. 87, N. 5. P. 1061-1075.

12. Depraetere B., Stoev J., Pinte G., Swevers J. Identification of linear systems with binary output measurements using short independent experiments // Mechanical systems and signal processing. 2015. Vol. 50-51, N. 1. P. 296-306.

13. Keesman K. J. System Identification: An Introduction. Sprin-ger-Verlag London, 2011. 323 p.

14. Max J. Methodes et techniques de traitement du signal et applications aux mesures physiques. Iss 1. Principes generaux et methodes classiques. Masson, 1981. 302 p.

15. Якимов В. Н. Обобщенная математическая модель двухуровневого знакового преобразования // Техника машиностроения. 2000. № 4. С. 72-74.

16. Мирский Г. Я. Характеристики стохастической взаимосвязи и их измерения. М.: Энергоиздат, 1982. 320 с.

17. Якимов В. Н. Цифровой корреляционный анализ на основе интервального представления результата знакового преобразования случайных процессов // Приборы и системы. Управление, контроль, диагностика. 2001. № 11. С. 61-66.

18. Якимов В. Н. Структурное проектирование цифровых коррелометров для оперативного корреляционного анализа на основе знакового аналого-стохастического квантования // Измерительная техника. 2007. № 4. С. 6-11.

19. Yakimov V. N. The structural design of digital correlometers for operational correlation analysis based on sign-function analog-stochastic quantization // Measurement Techniques. Publisher: Springer New York. 2007. Vol. 50, N. 4. P. 356-363.


Review

For citations:


Yakimov V.N., Batyschev V.I., Mashkov A.V. Statistical Identification of the Linear Dynamic Systems with the Use of the Sign-Function Analog-Stochastic Quantization of the Input and Output Signals. Mekhatronika, Avtomatizatsiya, Upravlenie. 2017;18(9):604-611. (In Russ.) https://doi.org/10.17587/mau.18.604-611

Views: 476


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)