Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Analytical 3D Terminal Guidance Algorithm for Lunar Landing

https://doi.org/10.17587/mau.18.423-431

Abstract

This article presents three-dimensional (3D) terminal guidance scheme for a spacecraft lunar landing maneuver. An analytical solution to a spacecraft terminal guidance problem for achieving the desired spot in the circumlunar space is proposed. The solution is obtained for constant acceleration trajectory when thrust throttling is used to maintain uniform braking deceleration. The pitch program and the yaw program are essentially linear with time. П achieve 6 terminal conditions (position and velocity terminal vectors components) 6 guidance law parameters are used: pitch angle and pitch rate, yaw angle and yaw rate, braking deceleration and time-to-go. The solution is executed in the coordinate frame associated with the desired terminal spot. Current spacecraft position and velocity relative to this frame is supposed to be known at any time during the guidance. The simulation results of spacecraft guidance and control using proposed solution are presented. Analysis of the simulation results validates the basic performance of the proposed terminal guidance scheme. It should be noted that as the proposed scheme presuppose thrust variation on an undisturbed trajectory it makes sense to look for ways of reducing of required throttling range. The next phase of this research will be intended to carrying out terminal errors analysis and comparison of the accuracy of the proposed scheme and some other schemes.

About the Authors

A. V. Fomichev
Bauman Moscow State Technical University
Russian Federation


E. K. Li
Bauman Moscow State Technical University
Russian Federation


References

1. Филимонов А. Б., Филимонов Н. Б. Методы "гибких" траекторий в задачах терминального управления вертикальными маневрами летательных аппаратов. В кн.: Проблемы управления сложными динамическими объектами авиационной и космической техники / Под ред. акад. РАН С. Н. Васильева. М.: Машиностроение, 2015. С. 51-110.

2. Батенко А. П. Системы терминального управления. М.: Радио и связь, 1984. 161 с.

3. Разыграев А. П. Метод терминального управления пространственным движением при мягкой посадке в заданную точку на поверхности планеты // Основы управления полетом космических аппаратов: Учеб. пособ. для втузов. М.: Машиностроение, 1990. С. 378-386.

4. Klumpp A. R. Apollo Lunar Descent Guidance // Automatica. 1974. Vol. 10, N. 2. P. 133-146.

5. Lunghi P., Lavagna M., Armellin R. A Semi-analytical Guidance Algorithm for Autonomous Landing //Advances in Space Research. 2015. Vol. 55, N. 11. P. 2719-2738.

6. Chomel C. T., Bishop R. H. Analytical lunar descent guidance algorithm // Journal of guidance, control, and dynamics. 2009. Vol. 32, N. 3. P. 915-926.

7. Li M., Macdonald M., McInnes C. R., Jing W. Analytical landing trajectories for embedded autonomy // Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 2010. 224 (11). P. 1177-1191.

8. Бранен В. Н., Шмыглевский И. П. Применение кватернионов в задачах ориентации твердого тела. М.: Наука, 1973.320 с.


Review

For citations:


Fomichev A.V., Li E.K. Analytical 3D Terminal Guidance Algorithm for Lunar Landing. Mekhatronika, Avtomatizatsiya, Upravlenie. 2017;18(6):423-431. (In Russ.) https://doi.org/10.17587/mau.18.423-431

Views: 602


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)