Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

To Problem of Partial Stability of Nonlinear Discrete-Time Systems

https://doi.org/10.17587/mau.18.371-375

Abstract

It is can identify three main classes of problems broadly characterizing partial stability of a dynamical systems, viz., (1) stability with respect to a part of the variables of the zero equilibrium position (Lyapunov-Rumyantsev partial stability problem), (2) stability of the "partial"zero equilibrium position, and (3) stability with respect to a part of the variables of the "partial"zero equilibrium position. In the problem of stability with respect to a part of the variables of the zero equilibrium position of systems of ordinary differential equations with continuous right-side assumes the domain of initial perturbations to be a sufficiently small neighborhood of the zero equilibrium position. Along with this statement, the case then initial perturbations can be large with respect to one part of non-controlled variables and arbitrary with respect to their other part is also considered. On the other hand, for stability problem of "partial" zero equilibrium positions of systems of ordinary differential equations also naturally assume that initial perturbations of variables that do not define the given equilibrium position can be large with respect to one part of the variables and arbitrary with respect to their other part. Contrary the assumptions that initial perturbations of this variables are either only arbitrary or only large the combined assumption made it possible an admissible trade-off between the meaning sense for notion of stability and the respective requirements on the Lyapunov functions. The article studies the problem of partial stability for nonlinear discrete-time systems: stability with respect to a part of the variables of "partial" equilibrium position. Initial perturbations of variables that do not define the given equilibrium position can be large (belonging to an arbitrary compact set) with respect to one part of the variables and arbitrary with respect to their other part. A conditions of stability of this type are obtained in the context of a discrete analog of the Lyapunov functions method, which generalize a number of existing results. Example is given. The problem of unification of process of studying partial stability problems of stationary and non-stationary nonlinear discrete-time systems is also discussed

About the Authors

V. I. Vorotnikov
Ural federal university
Russian Federation


Yu. G. Martyshenko
Russian state university of oil and gas
Russian Federation


References

1. Halanay A., Wexler D. Qualitative Theory of Impulsive Systems. Bucharest: Ed. Acad. RPR, 1968.

2. Фурасов В. Д. Устойчивость и стабилизация дискретных процессов. М.: Наука, 1982.

3. Аgarwal R. P. Difference Equations and Inequalities: Theory, Methods and Applications. N. Y.: Marcel Dekker, 2000.

4. Elaydi S. An Introduction to Difference Equations. N. Y.: Springer-Verlag, 2005.

5. Александров А. Ю., Жабко А. П. Устойчивость движений дискретных динамических систем. СПб.: Изд-во СПбГУ, 2007.

6. Haddad W. M., Chellaboina V. Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach, Princeton: Princeton University Press, 2008.

7. Зуев А. Л., Игнатьев А. О., Ковалев А. М. Устойчивость и стабилизация нелинейных систем. Киев: Наукова Думка, 2013.

8. Воротников В. И. Об устойчивости и устойчивости по части переменных "частичных" положений равновесия нелинейных динамических систем // Доклады РАН. 2003. Т. 389, № 3. С. 332-337.

9. Воротников В. И., Мартышенко Ю. Г. К теории частичной устойчивости нелинейных динамических систем // Известия РАН. Теория и системы управления. 2010. Т. 51, Вып. 5. С. 23-31.

10. Воротников В. И. Частичная устойчивость и управление: состояние проблемы и перспективы развития // Автоматика и телемеханика. 2005. № 4. С. 3-59.

11. Воротников В. И., Мартышенко Ю. Г. Об устойчивости по части переменных "частичных" положений равновесия систем с последействием // Математические заметки. 2014. Т. 96, Вып. 4. С. 496-503.

12. Pachpatte B. G. Partial stability of solutions of difference equations // Proc. Nat. Acad. Sci., India, 1973. V. A43. P. 235-238.

13. Ramirez-LIanos E., Martinez S. Distributed and robust resourse allocation algorithms for multi-agent systems via discrete-time iterations // Proc. IEEE Conf. Decision and Control. 2015. P. 1390-1395.


Review

For citations:


Vorotnikov V.I., Martyshenko Yu.G. To Problem of Partial Stability of Nonlinear Discrete-Time Systems. Mekhatronika, Avtomatizatsiya, Upravlenie. 2017;18(6):371-375. (In Russ.) https://doi.org/10.17587/mau.18.371-375

Views: 458


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)