Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Feedback Linearization of Continuous and Discrete Multidimensional Systems

https://doi.org/10.17587/mau.18.363-370

Abstract

The problem of feedback linearization (FL) of continuous and discrete nonlinear MIMO systems is considered. The idea of FL method consists in converting the original nonlinear system into a linear one by means of feedback. Then, the methods of control theory for linear systems are used for system design. A widespread approach to FL design is based on the method of normal form, that uses a nonsingular transformation of system state variables z = T(x). In order to obtain a normal form of the nonlinear system in the neighbor of a some point, it is necessary to determine a special function - the system virtual output, for which a relative degree (in the case of single input) or a vector relative degree (in the case of multiple input) is determined. Applicability of the normal form method for FL is provided by the conditions of controllability and involutivity for the considered nonlinear system, which are not always true. Moreover, when developing a linearizing control law, the main difficulty lies in the transition from transformed variables z to state variables x of the original system. In this paper, we propose another approach, based on representing the original nonlinear system into a state-dependent coefficient form and applying the canonical similarity transformation z = T(x)x, that allow getting the system to canonical form, that considerably simplifies the FL problem. Such similarity transformation allow accomplishing linearization of system without determining of the virtual system output. Another advantage of the proposed method is that the technique of the transition from the transformed variables z to the state variables x of the original system is simpler. The results are illustrated by examples for continuous and discrete nonlinear systems.

About the Author

A. A. Kabanov
Sevastopol State University
Russian Federation


References

1. Мирошник И. В., Никифоров В. О., Фрадков А. Л. Нелинейное и адаптивное управление сложными динамическими системами. СПб.: Наука, 2000. 549 с.

2. Isidori A. Nonlinear control systems. New York: Springer-Verlag, 1995.

3. Кабанов А. А., Крамарь В. А. Линеаризация обратной связью нелинейных систем на основе канонического преобразования подобия // Материалы Всероссийской конференции по проблемам управления в технических системах, Санкт-Петербург, 26-29 октября, 2015. С. 10-13.

4. Зубер И. Е. Синтез канонических преобразований подобия для нелинейных нестационарных динамических систем управления // Дифференциальные уравнения и процессы управления, 2003. № 4. С. 38-51.

5. Зубер И. Е. Канонические преобразования и стабилизация нелинейных дискретных систем управления // Вестник СПбГУ. Сер. 1, 2004. Вып. 1 (№ 1). С. 6-13.

6. Kabanov A. A. Full-state Linearization of Systems via Feedback Using Similarity Transformation // 2016 International Siberian Conference on Control and Communications (SIBCON). Proceedings. National Research University Higher School of Economics. Russia, Moscow, May 12-14, 2016.

7. Guardabassi G. O. Approximate linearization via feedback: an overview / G. O. Guardabassi, S. M. Savaresi // Automatica. 2001. Vol. 37. P. 1-15.

8. Yamada K. Approximate feedback linearization for nonlinear systems and its application to the ACROBOT // Proceedings of the American Control Conference, Anchorage, AK, 2002. P. 1672-1677.

9. Кабанов А. А. Приближенная линеаризация обратной связью на основе сингулярно возмущенного подхода // Мехатроника, автоматизация, управление. 2015. № 8. С. 515-522.

10. Kabanov A. A. Composite Control for Nonlinear Singularly Perturbed Systems Based on Feedback Linearization Method // WSEAS Transactions on Systems. 2015. Vol. 14. P. 215-221.

11. men T. State-Dependent Riccati Equation (SDRE) Control: A Survey // Proceedings of the 17th World Congress the International Federation of Automatic Control Seoul, Korea, July 6-11, 2008. P. 3761-3775.

12. Brunovsky P. A classification of linear controllable system // Kybernetika. 1970. Vol. 6. No. 2. P. 173-188.

13. Kang W. Approximate linearization of nonlinear control systems / W. Kang // Systems & Control Letters. 1994. Vol. 23. P. 43-52.

14. Tall I. A. Canonical Forms for Nonlinear Discrete Time Control Systems // Proc. of 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), Orlando, FL, USA, December 12-15, 2011. P. 1080-1085.


Review

For citations:


Kabanov A.A. Feedback Linearization of Continuous and Discrete Multidimensional Systems. Mekhatronika, Avtomatizatsiya, Upravlenie. 2017;18(6):363-370. (In Russ.) https://doi.org/10.17587/mau.18.363-370

Views: 584


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)