Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Wavelet Transform Method in Applications to the Analysis of the Nonlinear Control Systems

https://doi.org/10.17587/mau.18.308-316

Abstract

The article is devoted to the theory of Wavelet-transformations with reference to the analysis and synthesis of the dynamic characteristics of the control systems containing an essential nonlinearity of the type of the zone of tolerance, restriction, backlash, etc. of nonlinearity. In the presented work a possibility of application of a device of the theory of Wavelet-transformations for the analysis and synthesis of the dynamic characteristics of the control systems containing essential nonlinearity is considered. A scaling function and wavelet potential function are proposed. The given device has an advantage in comparison with the frequency methods, because it takes into account the processes in the time area. Reactions of the linear systems, including essential nonlinearity, to the influence of a kind of potential function and wavelet are investigated. Errors in the established mode, because of the essential nonlinearities in the tracking system are considered under the influence of the signals representing a Wavelet-number, made of potential functions and wavelet. The condition of stability of the closed-loop system to reaction of the open-loop on the typical influence in the form of a half wave is formulated. The given condition allows us to analyze the stability of the tracking system containing an essential nonlinearity. For this purpose the dependence of the factor of transfer K (j) and the relative delay T3 (j) for the open-loop system, where parameter j characterizes the width of a half wave, is formed. Application of the theory of Wavelet-transformations for the analysis of the nonlinear systems allows us to investigate the complex systems containing the essential nonlinearity as similarly linear systems. The proposed technique of analysis of the nonlinear systems has an advantage in comparison with the frequency methods, because it considers the processes in the time area and allows us to investigate analytically the errors and stability of the tracking systems.

About the Author

V. L. Afonin
Blagonravov Mechanical Engineering Research Institute, Russian Academy of Sciences
Russian Federation


References

1. Астафьева Н. М. Вейвлет-анализ: основы теории и примеры применения // Успехи физических наук. 1998. Т. 166, № 11. С. 1145-1170.

2. Афонин В. Л., Чепелев В. М. Метод потенциальных функций для построения вейвлет-рядов // Изв. РАН. ТиСУ. 2008. № 2. С. 104-114.

3. Афонин В. Л., Чепелев В. М. Вейвлет-преобразования на основе потенциальных функций в задачах распознавания образов // Изв. РАН. ТиСУ. 2009. № 6. 94-105.

4. Афонин В. Л., Кондратьев И. М. Применение аппарата вейвлет-разложений для анализа и оценки шероховатости поверхности детали при механической обработке // Проблемы машиностроения и автоматизации. 2013. № 3. С. 65-70.

5. Воробьев В. И., Грибунин В. Г. Теория и практика вейвлет-преобразования. СПб.: Изд-во ВУС, 1999.

6. Добеши И. Десять лекций по вейвлетам. Ижевск: РХД, 2001.

7. Дьяконов В. П. Вейвлеты. От теории к практике. М.: СОЛОН-Пресс, 2004. 400 с.

8. Смоленцев Н. К. Основы теории вейвлетов. Вейвлеты в MATLAB. М.: ДМК Пресс, 2005. 304 с.

9. Чуи К. Введение в вейвлеты. Пер. с англ. Я. М. Жилейкина. М.: Мир, 2001. 412 с.

10. Afonin V. L., Sakharova E. I. Estimation Plane Image Fean-ture Attributes using Wavelet Trasform Coefficiets // Engineering & Automation Problems. 2010. N. 1. P. 82-84.

11. Dinggang Shen, Horace H. S. Ip. Discriminative wavelet shape descriptors for recognition of 2-D patterns // Pattern Recognition. 1999. V. 32. P. 151-165.

12. Canuto C., Tabacco A., Urban K. The Wavelet Element Method. Part II: Realization and Additional Features in 2D and 3D // NASA/CR-1998-207637, ICASE Report No. P. 98-117.

13. Chun-Te Li, Jiang Li, Shizhuo Yin et al. Synthesize multi- level composite filter for synthetic-aperture radar image identification // Optics Communications. 1998. V. 146. P. 285-301.

14. Андронов А. А., Вит А. А., Хайкин С. Э. Теория колебаний. М.: Физматгиз, 1959. 915 с.

15. Попов Е. П. Теория нелинейных систем автоматического управления и регулирования: учеб. пособ. М.: Наука. Гл. ред. Физ.-мат. лит., 1988. 256 с.

16. Воронов А. А. Основы теории автоматического управления. М.-Л.: Энергия, 1965. 396 с.

17. Корн Г., Корн Т. Справочник по математике. М.: Наука, 1970. 720 с.


Review

For citations:


Afonin V.L. Wavelet Transform Method in Applications to the Analysis of the Nonlinear Control Systems. Mekhatronika, Avtomatizatsiya, Upravlenie. 2017;18(5):308-316. (In Russ.) https://doi.org/10.17587/mau.18.308-316

Views: 463


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)