Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Conditions of Transversality as an Effective Instrument in the Mathematical Constructions of the Optimal Processes

https://doi.org/10.17587/mau.18.291-297

Abstract

The topic of the article concerns the mathematical theory of the optimal processes and its methods. In particular, the extremely topical aspects of the methodology of the maximum principle and the procedure of its practical use are discussed. The article presents in details the transversality conditions, their role, place and significance in the general procedure for solving of the problems of finding the optimal functions. This work eliminates the existing methodical defect connected with an incomplete use of the transversality conditions. On concrete examples, it shows that the transversality conditions (as one of the necessary conditions of optimality in the form of the maximum principle) are an extremely effective mathematical tool (and even the only one, in some cases) for determination of the characteristic properties, laws and key characteristics (parameters, constants, integrals of motion) of the optimal solutions for the systems of ordinary differential equations (of the dynamic systems). The importance of the topic is explained by the fact that in the overwhelming majority of cases the authors believe that the transversality conditions complicate the problem of search for the optimum functions, instead of simplifying it. However, it is far f/om being so, and it is a standard error, which has become almost typical. In the paper, the authors convincingly demonstrate the following conclusion: for a maximally correct and complete solution of the problems of the optimal control, the transversality conditions, being the necessary conditions for a optimality similarly as the condition of the Hamiltonian maximum and the adjoint system of the differential equations, should be taken into account since the beginning and be included in the system of the equations, which formalize the maximum principle, directly after defining the adjoint variables, formation of the Hamil-tonian and the adjoint system of equations, determination of the properties of the optimal adjoint functions and the control variables. The concrete examples presented in the article confirm the exclusively significant role (quite often critical role) of the transversality conditions in the general algorithm of the procedure for application of the maximum principle.

About the Author

M. V. Levskii
Maximov Research Institute of Space Systems, Branch of the Khrunichev State Research and Production Space Center
Russian Federation


References

1. Понтрягин Л. С., Болтянский В. Г., Гамкрелидзе Р. В., Мищенко Е. Ф. Математическая теория оптимальных процессов. M.: Наука, 1983.

2. Бранец В. Н., Черток М. Б., Казначеев Ю. В. Оптимальный разворот твердого тела с одной осью симметрии // Космические исследования. 1984. Вып. 3.

3. Сиротин А. Н. Оптимальное управление переориентацией симметричного твердого тела из положения покоя в положение покоя // Механика твердого тела. 1989. № 1.

4. Голубев Ю. Ф. Брахистохрона с кулоновским и вязким сопротивлением // Вестник Нижегородского университета им. Н. И. Лобачевского. 2011. № 4 (2).

5. Сапунков Я. Г., Молоденков А. В. Решение задачи оптимального в смысле минимума энергетических затрат разворота космического аппарата в классе конических движений // Вестник Саратовского государственного технического университета. 2013. № 2 (70). Вып. 1.

6. Levskii M. V. About method for solving the optimal control problems of spacecraft spatial orientation // Problems of Nonlinear Analysis in Engineering Systems. 2015. Vol. 21, N. 2 (44).

7. Левский М. В. Об одном случае оптимального управления пространственной ориентацией космического аппарата // Известия РАН. Теория и системы управления. 2012. № 4.

8. Левский М. В. К вопросу оптимального успокоения космического аппарата // Известия РАН. Теория и системы управления. 2011. № 1.

9. Lastman G. J. A shooting method for solving two-point boundary-value problems arising from non-singular bang-bang optimal control problems // International Journal of control. 1978. Vol. 27, N. 4.

10. Li F., Bainum P. M. Numerical approach for solving rigid spacecraft minimum time attitude maneuvers // Journal of Guidance, Control, and Dynamics. 1990. Vol. 13, № 1.

11. Enrico Bertolazzi, Francesco Biral, Mauro Da Lio. Symbolic-numeric efficient solution of optimal control problems for multibody systems // Journal of Computational and Applied Mathematics. 2006. Vol. 185, Iss. 2, 15.

12. Моисеев Н. Н. Численные методы в теории оптимальных систем. М.: Наука, 1971.

13. Young L. G. Lectures on the calculus of variations and optimal control theory. W. B. Saunders Company. Philadelphia, London, Toronto, 1969.


Review

For citations:


Levskii M.V. Conditions of Transversality as an Effective Instrument in the Mathematical Constructions of the Optimal Processes. Mekhatronika, Avtomatizatsiya, Upravlenie. 2017;18(5):291-297. (In Russ.) https://doi.org/10.17587/mau.18.291-297

Views: 489


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)