Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Energy of the Sea Craft Contour - Anomalous Wave System

https://doi.org/10.17587/mau.18.208-215

Abstract

The article is devoted to a numerical study of the contour - anomalous wave system and the quantitative estimates of its energy parameters. The author discovered that the profile of an anomalous wave undergoes the following stages: the initial profile, the profile with the first maximum height, the two-humped profile, the profile with a second maximum height, and the breaking profile. The problem is solved by CFD method in three stages. At the beginning the density maximum of the kinetic energy and its position on the anomalous wave profiles was calculated. It was discovered that the anomalous wave profile with the second maximum has the highest energy density and presents the greatest danger to the contour stability. Then, the numerical studies demonstrated that the kinetic energy increased as we approached the time of the anomalous wave collapse. It was discovered that the sum of the kinetic and potential energies is reduced due to the dissipation associated with the physical and turbulent viscosity. Eventually, we calculated the contour capsizing work. It was revealed that the anomalous wave energy loss corresponded to the contour capsizing work and increased with the vessel displacement. The relative value limit of the anomalous wave energy losses on bad moving contour reached 40 %. The received results can be used, firstly, for development of CFD based numerical studies. Secondly, the results can be used as the database for improvement of the design of the vessels, and also as a motive to search for causes of shipwrecks of vessels over 27000 tons, which did not capsize due to anomalous wave.

About the Author

V. M. Dorozhko
Institute of Automation and Control Processes, Far East Branch, Russian Academy of Sciences (IACP FEB RAS)
Russian Federation


References

1. Kharif C., Pelinovsky E. and Slunyaev A. Rogue waves in the ocean. Berlin: Springer, 2009. 215 p.

2. Benjamin T. B., Feir J. E. The disintegration of wave trains in deep water // J. Fluid. Mech. 1967. V. 27. P. 417-430.

3. Zakharov V. E. Stability of periodic waves of finite amplitude on the surface of a deep fluid // J. Appl. Mech. Tech. Phys. 1968. V. 9, N. 2. P. 190-194.

4. Пелиновский Е. Н., Слюняев А. В. "Фрики" - морские волны-убийцы // Природа. 2007. № 3. С. 14-23.

5. Rosenthal W., Lehner. Rogue Waves: Results of the MaxWave Project // Journal of Offshore Mechanics and Arctic Engineering. 2008. V. 130. P. 1-8.

6. Extreme Seas. Design for ship safety in extreme seas. URL: https://www.hse.ru/data/2011/10/12/1270460467/ES%202011sep17.pdf (Дата обращения: 12.04.2016).

7. Nikolkina I., Didenkulova I. Rogue waves in 2006-2010 // Natural hazards and Earth system sciences. 2011. V. 11. P. 2913-2924.

8. Научный центр по изучению "волн-убийц". URL: http:// roguewaves.ru (Дата обращения: 12.04.2016).

9. Rogue waves research project. URL: http://www.ercmulti-wave.eu (Дата обращения: 12.04.2016).

10. Ruban V., Kodama Y., Ruderman M. et al. Rogue waves - towards a unifying concept: Discussions and debates // The European physical journal special topics. 2010. Iss. 185. P. 5-15.

11. Шамин Р. В. Моделирование волн-убийц на основе эволюционных дифференциальных включений // Фундаментальная и прикладная гидрофизика. 2012. Т. 5, № 1. С. 14-23.

12. Кузнецов С. Ю., Сапрыкина Я. В. Экспериментальные исследования возникновения волн-убийц при эволюции узкого спектра крутых волн // Фундаментальная и прикладная гидрофизика. 2012. Т. 5, № 1. С. 52-63.

13. Пелиновский Е. Н., Шургалина Е. Г. Аномальное усиление волны вблизи вертикальной преграды // Фундаментальная и прикладная гидрофизика. 2010. Т. 10, № 4. С. 29-38.

14. Clauss G. F., Schmittner C. E., Hennig J. Simulation of rogue waves and their impact on marine structures, Proceedings of MAXWAVE, Final meeting, Geneva, Switzerland, October 8-10, 2003. P. 1-10.

15. Ming Wu, Bo Yang, Zuochao Wang et al. Prediction of Ship Motions in Head Waves Using RANS Method // Proceedings of the Twenty-second International Offshore and Polar Engineering Conference. Rhodes, Greece. 2012. June 17-22. P. 1112-1117.

16. Zaharov V. E., Shamin R. V., Yudin A. V. Energetic portrait of the rogue waves // JETP Letters. 2014. V. 99, N. 9. P. 514-517.

17. Sergeeva А. and Slunyaev А. Rogue waves, rogue events and extreme wave kinematics in spatio-temporal fields of simulated sea states // Natural Hazards and Earth System Sciences. 2013. N. 13. P. 1759-1771.

18. Чаликов Д. В. Портрет волны-убийцы // Фундаментальная и прикладная гидрофизика. 2012. Т. 5, № 1. С. 5-13.

19. Дорожко В. М. Устойчивость контура морского судна к опрокидыванию волной-убийцей // Мехатроника, автоматизация, управление. 2015. Т. 17, № 12. С. 852-860.

20. Ferziger J. H. Computational Methods for Fluid Dynamics. Berlin: Springer, 2002. 431 p.

21. Yakhot V., Orszag S. Renormalization group analysis of turbulence: Basic theory // Journal of scientific computing. 1986. V. 1, N. 1. P. 1-51.

22. Hirt C. W., Nichols B. D. Volume of fluid method for the dynamics of free boundaries // Comp. Phys. 1981. V. 39, N. 1. P. 201-225.

23. Fonseca N., Soares C., Pascoal R. Structural loads induced in a containership by abnormal wave conditions // Journ. Mar. Sci. Technol. 2006. N. 11. P. 245-259.

24. Флот рыбной промышленности. Справочник типовых судов. М.: Транспорт, 1990. 381 с.


Review

For citations:


Dorozhko V.M. Energy of the Sea Craft Contour - Anomalous Wave System. Mekhatronika, Avtomatizatsiya, Upravlenie. 2017;18(3):208-215. (In Russ.) https://doi.org/10.17587/mau.18.208-215

Views: 388


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)