Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Self-Learning Mechanisms in the Multi-robot Systems Based on the Evolution Forests and Classification Trees

https://doi.org/10.17587/mau.18.159-165

Abstract

The article investigates different approaches to the problem of autonomous robots' self-learning. The knowledge, which a priori is introduced into the on-board control system of an intelligent autonomous robot for control of its expedient behavior in certain situations, should, in general, be supplemented with the results of the self-learning based on the analysis of the accumulated experience. A variety of the autonomous robots' applications in combination with the diversity of the environmental uncertainty types makes possible several options for augmentation of knowledge. The authors employ the construction methods of the classification trees and the decision forests to find the hidden patterns in the arrays of the sensory data, which accumulate the experience, gathered by the robots operating in a complex environment. The prospects of the decision forests construction method were demonstrated for organization of the self-learning processes in the multi-robot systems (MRS). A new approach to MRS self-learning was developed based on a combination of the decision forests and evolutionary computation methods. It was proved that the method of the evolutionary decision forests can serve as a constructive basis for development of the intelligent self-learning autonomous robots operating together within a multi-robot system. The authors demonstrated that the role of the robotic agents was not confined to accumulation of their own sensory data, but that they were also capable of a knowledge exchange and its incorporation into their personal experience. The results of the model simulation are presented, confirming the effectiveness of the proposed approach.

About the Authors

V. M. Lokhin
Moscow State Technical University MIREA
Russian Federation


S. V. Manko
Moscow State Technical University MIREA
Russian Federation


S. A. Diane
Moscow State Technical University MIREA
Russian Federation


A. S. Panin
Moscow State Technical University MIREA
Russian Federation


R. I. Alexandrova
Moscow State Technical University MIREA
Russian Federation


References

1. Макаров И. М., Лохин В. М., Манько С. В., Романов М. П., Крюченков Е. Н., Кучерский Р. В., Диане С. А. Мультиагентные робототехнические системы: примеры и перспективы применения // Мехатроника, автоматизация, управление. 2012. № 2. С. 22-32.

2. Макаров И. М., Лохин В. М., Манько С. В., Романов М. П. Принципы построения и проблемы разработки мультиагентных робототехнических систем // Мехатроника, автоматизация, управление. 2012. № 3. С. 11-16.

3. Макаров И. М., Лохин В. М., Манько С. В., Романов М. П., Крюченков Е. Н., Кучерский Р. В., Худак Ю. И. Модели и алгоритмы планирования действий и распределения заданий в мультиагентных робототехнических системах // Мехатроника, автоматизация, управление. 2012. № 5. C. 44-50.

4. Лохин В. М., Манько С. В., Романов М. П., Диане С. А. Способы представления знаний и особенности функционирования мультиагентных робототехнических систем // Мехатроника, автоматизация, управление. 2014. № 1. C. 36-39.

5. Лохин В. М., Манько С. В., Романов М. П., Диане С. А.К., Трипольский П. Э., Карпов С. А. Модели и алгоритмы оценки численности состава мультиагентных робототехнических систем // Мехатроника, автоматизация, управление № 3, 2014.

6. Лохин В. М., Манько С. В., Романов М. П., Александрова Р. И., Диане С. А. К. Принципы построения и программно-алгоритмическое обеспечение человеко-машинного интерфейса для автономных роботов и мультиагентных робототехнических систем // Мехатроника, автоматизация, управление. 2016. № 9. C. 606-614.

7. Лохин В. М., Манько С. В., Александрова Р. И., Диане С. А. К., Панин А. С. Механизмы интеллектуальных обратных связей, обработки знаний и самообучения в системах управления автономными роботами и мультиагентными робото-техническими группировками // Мехатроника, автоматизация, управление. 2015. № 8. С. 545-555.

8. Lior Rokach, Oded Maimon. Data mining with decision trees: theory and applications. World Scientific Pub Co Inc., 2008.

9. XindongWu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi Motoda, Geoffrey J. McLachlan, Angus Ng, Bing Liu, Philip S. Yu, Zhi-Hua Zhou, Michael Steinbach, David J. Hand, Dan Steinberg. Top 10 algorithms in data mining // Knowl. Inf. Syst. 2008. N. 14 (1). P. 1-37.

10. Leo Breiman. Random Forests. Machine Learning, October 2001. Vol. 45, Iss. 1. P. 5-32.

11. Melanie Mitchell. An Introduction to Genetic Algorithms. Cambridge MA: MIT Press, 1996.

12. Blum A., Kalai A., Langford J. Beating the hold-out: bounds for K-fold and progressive cross-validation // Proc. of the 10th Annual Conference on Computational Theory. 1999. P. 203-208.

13. Stentz A. Optimal and Efficient Path Planning for Partially-Known Environments // Proc. of the International Conference on Robotics and Automation. May 1994. P. 3310-3317.

14. Stentz A. The Focussed D* Algorithm for Real-Time Replanning // Proc. of the International Joint Conference on Artificial Intelligence. August 1995. P. 1652-1659.


Review

For citations:


Lokhin V.M., Manko S.V., Diane S.A., Panin A.S., Alexandrova R.I. Self-Learning Mechanisms in the Multi-robot Systems Based on the Evolution Forests and Classification Trees. Mekhatronika, Avtomatizatsiya, Upravlenie. 2017;18(3):159-165. (In Russ.) https://doi.org/10.17587/mau.18.159-165

Views: 586


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)