Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Mechanism of the Cycle Slips in the Stochastic Analog Phase-Locked Loops of the First and Second Orders

https://doi.org/10.17587/mau.18.7-21

Abstract

A posteriori broadband input noise characteristics of the analog phase locked loop (PLL) system along the cycle slip trajectory were studied on the basis of Markov stochastic model. It was demonstrated that the cycle slips were caused by an unlikely event - existence of an extended period of time, in which a random process, which describes the noise, mainly preserves its sign. A mathematical model of the most probable cycle slip trajectory in the stochastic analog of PLL of the first and second orders in the form of the ordinary differential equations with respect to the coordinate system on the phase plane was presented. There was demonstrated equivalence ofthe approaches to search the most probable cycle slip trajectory: the search for the maximum of the probability density function of the points of coordinates along the trajectory and the solution of the variational problem. A model of abnormal noise associated with the cycle slips effect was presented. An approximated formula for description of the spectral power density of the abnormal noise was offered. The process of the cycle slips in the PLL with the non-linear element in the feedback loop was investigated. It was demonstrated that such systems have improved characteristics of the average time before a cycle sleep in comparison with the traditional ones. An explanation for an increase of time before a tracking failure, when using a non-linear element in the feedback loop, was presented. Approaches to selection of the type of nonlinearity were considered. Numerical values for the average time before a cycle sleep for various types of non-linearity and parameters of PLL on the basis of computer simulation were presented.

About the Authors

V. V. Sizykh
Moscow Technological University (MIREA)
Russian Federation


B. I. Shakhtarin
Bauman Moscow State Technical University
Russian Federation


V. A Shevtsev
Moscow Technological University (MIREA)
Russian Federation


References

1. Tausworthe R. C. Simplified formula for mean cycle slip time of phase-locked loop with steady-state phase error // IEEE Trans. 1972. Vol. COM-20, No. 3. P. 331-337.

2. Шахтарин Б. И. Статистическая динамика систем синхронизации. М.: Радио и связь, 1998.

3. Шахтарин Б. И., Щепкин Ю. Н. Экспериментальное исследование флуктуационных помех на систему фазовой автоподстройки частоты // Электросвязь. 1966. № 9. С. 18-23.

4. Миронов М. А., Белоусова B. C. Срыв синхронизации в системах фазовой автоподстройки второго порядка // Радиотехника и электроника. 1981. Т. 26, № 1. С. 118-126.

5. Миронов М. А., Белоусова B. C. Статистические характеристики срыва синхронизации в аналоговых системах фазовой автоподстройки второго порядка // Радиотехника и электроника. 1981. Т. 26, № 4. С. 783-792.

6. Шахтарин Б. И., Сизых В. В., Трешневская В. О. Статистические характеристики фазовой автоподстройки с интегрирующим фильтром // Радиотехника и электроника. 1997. № 7. С. 839-844.

7. Сизых В. В., Шахтарин Б. И. Исследование статистических характеристик фазовой автоподстройки частоты второго порядка // Радиотехника и электроника. 1998. Т. 42, № 5.

8. Сизых В. В., Щукин П. Н. Вопросы анализа срыва слежения в непрерывных системах фазовой автоподстройки // Радиотехника. 2011. № 12. С. 87-103.

9. Линдсей В. Системы синхронизации в связи и управлении. М.: Советское радио, 1978.

10. Шахтарин Б. И. Анализ систем синхронизации при наличии помех. М.: ИПРЖР, 1996.

11. Rise S. O. Noise in FM receivers // Proc. Symp. Time Series Analysis / Ed. M. Rosenblatt. N. Y.: Wiley, 1963.

12. Hess D. T. Cycle slipping in first-order phase-locked loop // IEEE Trans. 1968. Vol. COM-16, N. 2. P. 255-260.


Review

For citations:


Sizykh V.V., Shakhtarin B.I., Shevtsev V.A. Mechanism of the Cycle Slips in the Stochastic Analog Phase-Locked Loops of the First and Second Orders. Mekhatronika, Avtomatizatsiya, Upravlenie. 2017;18(1):7-21. (In Russ.) https://doi.org/10.17587/mau.18.7-21

Views: 464


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)