Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Concerning the Use of a Neural Tuner for Adjustment of the Speed P-controller of a Rolling Mill's Main Drive

https://doi.org/10.17587/mau.18.685-692

Abstract

Rolling production is one of the most energy-consuming sectors of the metallurgical industry. The most powerful plants are the rolling mills producing rough rolling of the steel casts. They are based on the technology of the reverse rolling. It requires variation of the roll mill parameters. Such a variation may also be due to replacement of the worn out rolls. So, the controllers with constant parameters usage results in the deterioration of the transient quality for the rolling mill main drive. An adaptive control system can be developed to solve the problem. A brief analysis of the linear controller tuners is presented in this research and a neural tuner is proposed to solve the problem. It combines an artificial neural network and a rule base. It does not require identification of the plant model or use of the test signals. In this paper the authors consider a control system for the main DC electric drive of a two-roll reversing rolling mill. A structure for the neural network is selected and the rule base is described. It defines the moments, when a controller should be adjusted (training of the neural network) as well as an appropriate learning rate. Experiments for application of the neural tuner were conducted using the rolling mill DC electric drive model, as well as a physical model of this drive. An analysis of the experimental results shows, that the neural tuner adjusts the speed of the controller effectively. The purpose of the further research is to apply the neural tuner to compensate for the disturbances acting on the rolling mill and caused by the steel cast engagement.

About the Authors

Yu. I. Eremenko
Department of Automated and Information Control Systems, Stary Oskol Technological Institute named after Ugarov, MISIS National University of Science and Technology (branch)
Russian Federation


A. I. Glushchenko
Department of Automated and Information Control Systems, Stary Oskol Technological Institute named after Ugarov, MISIS National University of Science and Technology (branch)
Russian Federation


V. A. Petrov
Department of Automated and Information Control Systems, Stary Oskol Technological Institute named after Ugarov, MISIS National University of Science and Technology (branch)
Russian Federation


References

1. Kun E., Veisz T. S. Energy efficiency enhancement in the Hot Rolling Mill // Materials Science and Engineering. 2014. N. 3.2. P. 43-50.

2. Stashinov Y. P. On the issue of control system adjustment of a direct current drive on the modular optimum. Part 1 // Russian Electrical Engineering. 2016. N. 87. 1. P. 1-5.

3. Ротач В. Я. Теория автоматического управления: учебник для вузов. М.: Издательский дом МЭИ, 2008. 396 с.

4. Новоселов Б. В. и др. Автоматы-настройщики следящих систем. М.: Энергия, 1975. 264 с.

5. Александров А. Г. Оптимальные и адаптивные системы. М.: Высшая школа, 1989. 263 с.

6. Graham A. E., Young A. J., Xie S. Q. Rapid tuning of controllers by IFT for profile cutting machines // Mechatronics. 2007. Vol. 17. N. 2. P. 121-128.

7. Abedini S., Zarabadipour H. Tuning of an optimal PID controller with iterative feedback tuning method for DC motor // 2nd International Conference on Control, Instrumentation and Automation. IEEE, 2011. P. 611-615.

8. Краснодубец Л. А., Олейников А. М. ПИД регулятор как платформа для реализации адаптивных законов управления электроприводом // Мехатроника, автоматизация, управление. 2016. № 12 (17). С. 809-816.

9. Shahgholian G. et al. Analysis of speed control in DC motor drive by using fuzzy control based on model reference adaptive control // 13th International Conference on ECTI-CON. IEEE, 2016. P. 1-6.

10. Li Z. Model reference adaptive controller design based on fuzzy inference system // Journal of Information & Computational Science. 2011. Vol. 8.9. P. 1683-1693.

11. Nath K. et al. Speed Control of Neural Network Based Energy Efficient DC Drive // Second International Conference on ICACCE. IEEE, 2015. P. 318-323.

12. Zhang S. M., Zhou X., Yang L. Adaptive PID regulator based on neural network for DC motor speed control. 2011 International Conference on ICECE. IEEE, 2011. P. 1950-1953.

13. Fan L., Liu Y. Fuzzy Self-Tuning PID Control of the Main Drive System for Four-High Hot Rolling Mill // Journal ofAdvanced Manufacturing Systems. 2015. Vol. 14. P. 01. P. 11-22.

14. Ланграф С. В. и др. Динамика электропривода с нечетким регулятором // Известия Томского политехнического университета. 2010. Т. 316. № 4. С. 168-173.

15. Черный С. П., Новак Д. А. Нечеткая многокаскадная система управления электроприводом постоянного тока // Электротехнические комплексы и системы управления. 2012. № 4. С. 56-60.

16. Sundareswaran K., Vasu M. Genetic tuning of PI controller for speed control of DC motor drive // Proceedings of IEEE International Conference on Industrial Technology. IEEE, 2000. Vol. 1. P. 521-525.

17. Bindu R., Namboothiripad M. K. Tuning of PID controller for DC servo motor using genetic algorithm // International Journal of Emerging Technology and Advanced Engineering. 2012. Vol. 2. N. 3. P. 310-314.

18. Allaoua B., Gasbaoui B., Mebarki B. Setting up PID DC motor speed control alteration parameters using particle swarm optimization strategy // Leonardo Electronic Journal of Practices and Technologies. 2009. Vol. 14. P. 19-32.

19. Alloua B., Laoufi A., Gasbaoui B., Abderrahmani A. Neuro-Fuzzy DC Motor speed Control Using Particle Swarm Optimization // Leonardo Electronic Journal of Practices and Technologies. 2009. Vol. 15. P. 1-18.

20. Mishra A. K. et al. Speed control of DC motor using artificial bee colony optimization technique // International Conference on CARE. IEEE, 2013. P. 1-6.

21. Das K. R., Das D., Das J. Optimal tuning of PID controller using GWO algorithm for speed control in DC motor // International Conference on ICSCTI. IEEE, 2015. P. 108-112.

22. Madadi A., Motlagh M. M. Optimal control of DC motor using grey wolf optimizer algorithm // TJEAS Journal-2014-4-04/373-379. 2014. Vol. 4. N. 4. P. 373-379.

23. Еременко Ю. И., Глущенко А. И., Петров В. А. О нейросетевой адаптации параметров ПИ-регулятора контура тока системы управления прокатной клетью в реальном времени // Системы управления и информационные технологии. 2016. № 3 (65). С. 62-68.

24. Еременко Ю. И., Глущенко А. И. О разработке метода выбора структуры нейронной сети для решения задачи адаптации параметров линейных регуляторов // Управление большими системами. 2016. Вып. 62. С. 75-123.

25. Еременко Ю. И., Полещенко Д. А., Глущенко А. И. О разработке метода определения значений задержек входных сигналов нейронной сети при реализации нейросетевого оптимизатора параметров ПИ-регулятора // Известия ЮФУ. Технические науки. 2015. № 10. С. 157-168.


Review

For citations:


Eremenko Yu.I., Glushchenko A.I., Petrov V.A. Concerning the Use of a Neural Tuner for Adjustment of the Speed P-controller of a Rolling Mill's Main Drive. Mekhatronika, Avtomatizatsiya, Upravlenie. 2017;18(10):685-692. (In Russ.) https://doi.org/10.17587/mau.18.685-692

Views: 568


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)