Intelligent Technologies for an Operative Functional Control of the Multivariable Systems
https://doi.org/10.17587/mau.18.670-678
Abstract
Principles of organization of the operative functional control for a complex multivariable system were proposed with retention of its operation process in the control circuits. For the use of the real values of the system in the control checks and for an operative formation of the system templates a high-speed system model was constructed for operation in the time scale of the system processes. The model combines the empiric, statistical, algorithmic and heuristic devices for imaging of the system parameters and links between them. Implementation of the proposed model presupposes establishment of the specialized components of the system for its intelligent control with the use of the processors. The model construction is based on performance of the preliminary empiric studies and use of the results of the technological regression analysis of the system in organization of the operative control based on the fuzzy logic instrument and fuzzy conclusions. The input, output and internal parameters of the studied system were conferred, the status of the linguistic variables, and possible intervals of the real values of the input system variables were set in an expert way, as well as the functions of their belonging. This makes it possible for every set of the input parameters to operatively build the functions of their belonging of the effective output and internal variables to the required fuzzy sets with the aid of the beta coefficients, fuzzy arithmetic operations and maximal generalization. The use of the fuzzy production rule, provision of conclusions (summaries) at the current values of the input parameters ensures forecasting of a possible location of the input and output variables of the system in the fuzzy sets, which correspond to the preliminarily allocated intervals of the values. Being so, a range of the operative effective output and internal parameters is formed in the controlled multivariable system. The use of the offered model of the operative functional control ensures a collation of the forecasted and real values of the effective parameters of the complex multivariable system and assessment of their non-contradiction.
About the Authors
A. V. Gulay
Belarus National Technical University
Russian Federation
V. M. Zaitsev
Belarus National Technical University
Russian Federation
References
1. Основы технической диагностики / Под ред. П. П. Пахоменко. М.: Энергия, 1976. 464 с.
2. Гурман В. Е. Теория вероятностей и математическая статистика. М.: Высшая школа, 2004. 479 c.
3. Дрейп Н., Смит Г. Прикладной регрессионный анализ. Множественная регрессия. М.: Диалектика, 2007. 912 с.
4. Купер К. Индивидуальные различия. М.: Аспект - Пресс, 2000. 527 c.
5. Заде Л. Понятие лингвистической переменной и ее применение к принятию приближенных решений. М.: Мир, 1976.165 c.
6. Борисов В. В., Федулов А. С., Зернов М. М. Основы нечеткой арифметики. М.: Горячая линия - Телеком, 2014. 98 с.
7. Штовба С. Д. Проектирование нечетких систем средствами MATLAB. М.: Горячая линия - Телеком, 2007. 288 с.
For citations:
Gulay A.V.,
Zaitsev V.M.
Intelligent Technologies for an Operative Functional Control of the Multivariable Systems. Mekhatronika, Avtomatizatsiya, Upravlenie. 2017;18(10):670-678.
(In Russ.)
https://doi.org/10.17587/mau.18.670-678
Views:
470